Statistische Methoden I

Slides:



Advertisements
Ähnliche Präsentationen
Masterstudiengang IE (Industrial Engineering)
Advertisements

Stochastik in der Sek. II Sabrina Schultze.
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Statistische Methoden I
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Statistische Methoden I WS 2006/2007 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial.
Statistische Methoden II SS 2008
Achtung Terminänderung !!!
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
M-L-Schätzer Erwartungswert
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Allgemein definiert man:. Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt.
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
4. Markov-Ketten 4.1. Übergangsmatrizen
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Hier noch ein Beispiel zur bedingten Wahrscheinlichkeit Drei Personen A, B und C befinden sich im Gefängnis. Einer von den dreien ist zum Tode verurteilt,
FILTER Input: Empirische Zeitreihe Output: Geglättete Zeitreihe.
Statistische Methoden I
Korrelationsrechnung
Zeit: 14:15 Ort: Hörsaal Loefflerstraße Heute wird die Vorlesung vom vergangenen Freitag nachgeholt! im Anschluss an die heutige reguläre Vorlesung.
II. Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Wahrscheinlichkeitsräume. A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov, Russland, geboren.
Die Vorlesung Statistische Methoden I fällt morgen ( ) aus! Zeit: 14:15 Ort: Hörsaal Loefflerstraße Diese Vorlesung wird am nächsten Donnerstag.
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Urnenmodelle. Wahrscheinlichkeitsräume A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov,
Statistische Maßzahlen
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt sich die folgende Tabelle:
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Urnenmodelle. Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)
Probeklausur am 21. Januar 2005 statt Vorlesung. Wahrscheinlichkeitstheorie.
Bedingte Wahrscheinlichkeiten
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Grundbegriffe der (deskriptiven) Statistik
Statistische Methoden I WS 2002/2003 Probeklausur Freitag, 13. Dezember statt Vorlesung - Nächsten Freitag!!!
Test auf Normalverteilung
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Lehrstuhl für Algebra und funktionalanalytische Anwendungen
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Wahrscheinlichkeitstheorie. Laplacescher Wahrscheinlicheitsraum.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte.
 Präsentation transkript:

Statistische Methoden I WS 2001/2002 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial 2.1. Der Häufigkeitsbegriff 2.2. Lage- und Streuungsparameter 2.3. Konzentrationsmaße (Lorenz-Kurve) 3. Mehrdimensionales Datenmaterial 3.1. Korrelations- und Regressionsrechnung 3.2. Indexzahlen 3.3. Saisonbereinigung

II. Wahrscheinlichkeitstheorie 1. Laplacesche Wahrscheinlicheitsräume 1.1. Kombinatorische Formeln 1.2. Berechnung von Laplace-Wahrschein- lichkeiten 2. Allgemeine Wahrscheinlichkeitsräume 2.1. Der diskrete Fall 2.2. Der stetige Fall 2.3. Unabhängigkeit und bedingte Wahrscheinlichkeit 3. Zufallsvariablen 3.1. Grundbegriffe 3.2. Erwartungswert und Varianz 3.3. Binomial- und Poisson-Verteilung 3.4. Die Normalverteilung und der Zentrale Grenzwertsatz

III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle 3. Tests 3.1. Grundbergriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse

Wahrscheinlichkeitstheorie

Laplacescher Wahrscheinlicheitsraum

Wahrscheinlichkeitsräume

Achtung Aufgabe!

Achtung noch eine Aufgabe!

Grundbegriffe der (deskriptiven) Statistik der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsdichten

Unabhängigkeit 1 1 1 1 Vier Spielkarten zeigen auf der Vorderseite die folgenden Aufschriften: 1 1 1 1 Eine Karte wird zufällig gezogen. Ereignisse A, B und C A : „Oben steht eine 0“ B: „In der Mitte steht eine 0“ C: „Unten steht eine 0“

Man hat zwar: Trotzdem sind die Ereignisse A, B und C nicht unabhängig: d. h. C kann nicht eintreten, wenn A und B eintreten.

Allgemein definiert man:

Achtung Aufgabe!

Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nichtrauchern ein- geteilt. Dabei ergibt sich die folgende Tabelle:

Also haben wir: Allgemein definiert man:

Achtung Aufgabe!

Pfadregel Dann hat man:

Baumdiagramm

Urne mit roten und grünen Kugeln Wir betrachten eine Urne mit einer roten und 3 grünen Kugeln. 1. Stufe: Eine Kugel wird zufällig gezogen, ihre Farbe notiert. Anschließend werden diese und eine Kugel derselben Farbe in die Urne zurückgelegt. 2. Stufe: Nach dem guten Mischen wird er- neut eine Kugel zufällig gezogen und deren Farbe notiert.

Baumdiagramm START 3/4 1/4 1 4/5 1/5 3/5 2/5 1 1

Achtung Aufgabe!

Formel von der totalen Wahrscheinlichkeit Einkommensverteilung der Haushalte in einer bestimmten Gegend Anteil der Haushalte, die ein Auto > DM 40 000,- anschaffen, in den verschiedenen Einkommensklassen

Es ergibt sich: Also nach der Formel für die totale Wahrscheinlichkeit:

Allgemein: Formel von der totalen Wahrscheinlichkeit

Satz von Bayes In einer Stadt vermutet man, dass für die Bevölkerung die folgende Aufteilung in Deutsche, Italiener und Ausländer, die keine Italiener sind, besteht: wobei die letzte Zeile den jeweiligen Anteil von Personen in der Bevölkerungsgruppe angibt, die gerne Spaghetti bestellen. (Beispiel nach H. Haase: Stochastik für Betriebswirte)

Jemand bestellt in einer Gaststätte Spaghetti. Wie groß ist die Wahrscheinlichkeit, dass dieser Gast ein Deutscher, ein Italiener oder ein nicht-italienischer Ausländer ist? D: „Der Gast ist ein Deutscher“ I: „Der Gast ist ein Italiener“ A: „Der Gast ist ein Ausländer, aber kein Italiener“ S: „Der Gast bestellt Spaghetti“

Nach der Formel für die totale Wahr- scheinlichkeit hat man: Daraus ergibt sich nach dem Satz von Bayes

Satz von Bayes

Verteilungsfunktion Beispiel „Würfel“

Beispiel „n-facher Münzwurf“ Verteilungsfunktion Beispiel „n-facher Münzwurf“

Zufallsvariablen Verteilung Verteilungsfunktion Wahrscheinlichkeitsfunktion Wahrscheinlichkeitsdichte Verteilung Die Verteilung einer ZV ist ein Wahr- scheinlichkeitsmaß auf den reellen Zahlen diskret stetig

Wahrscheinlichkeitsfunktion diskret f nennt man Wahrscheinlichkeitsfunktion von X stetig f nennt man Dichtefunktion von X

Verteilungsfunktion diskret stetig diskret stetig

Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz

Erwartungswert und Varianz II Der diskrete unendliche Fall Dabei nehmen wir an, dass Erwartungswert Varianz

Erwartungswert und Varianz III Der stetige Fall f ist die Wahrscheinlichkeitsdichte. Dabei nehmen wir an, dass Erwartungswert Varianz

Achtung Aufgabe!

Achtung noch eine Aufgabe!

Gegeben seien n Zufallsvariablen Dann gilt immer: Wenn gilt dann hat man auch Gleichheit von Bienaymé

Die Binomialverteilung

Man erhält eine Wahrscheinlichkeits- verteilung, weil gilt: Notation

Erwartungswert Varianz

Die Poisson-Verteilung

Man erhält eine Wahrscheinlichkeits- verteilung, weil gilt: Notation

Erwartungswert Varianz

Beispiele Poisson-verteilter Zufallsvariablen Anzahl der pro Zeiteinheit abgestrahlten Teilchen eines radioaktiven Präparats Anzahl der pro Zeiteinheit an einer Tankstelle tankenden PKW Anzahl der Sechser pro Ausspielung im Lotto Anzahl der pro Jahr von einer Versicherung zu regulierenden Schadensfälle Anzahl der innerhalb eines Tages geborenen Kinder

Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)

Die Gauß- oder Normalverteilung

Dichte Verteilung Verteilungsfunktion

Erwartungswert Varianz

Die hypergeometrische Verteilung Notation

Sie beträgt gerade H(n, N, m)(k)! Eine Urne enthält n Kugeln, davon N weiße und n - N schwarze. Aus der Urne werden nacheinander m Kugeln ohne Zurücklegen gezogen. Wie groß ist die Wahrscheinlichkeit, genau k weiße Kugeln zu ziehen? Sie beträgt gerade H(n, N, m)(k)!

Erwartungswert Varianz

Die geometrische Verteilung

Erwartungswert Varianz

Die Exponential-Verteilung

Dichte Verteilung Verteilungsfunktion

Erwartungswert Varianz

Der Zentrale Grenzwertsatz

Wichtige Eigenschaft der Normalverteilung Für unabhängige normalverteilte Zufallsvariablen X und Y hat man

Achtung Aufgabe!

Tafel für die Verteilungsfunktion bei Normalverteilung

Achtung noch eine Aufgabe!

... und endlich eine Liste ...