Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Detlef Bleil Geändert vor über 10 Jahren
1
Wahrscheinlichkeitsräume
2
A. N. Kolmogorov 1903 - 1987 Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov, Russland, geboren. Nach der Schule arbeitete er zunächst als Eisenbahnschaffner. Nebenbei schrieb er eine Abhandlung über die Newtonsche Mechanik. Bald ging er aber an die Moskauer Universität, und seine Entwicklung zu einem der bedeutendsten Mathematiker des vergangenen Jahrhunderts begann. Eine seiner großen Leistungen auf dem Gebiet der Stochastik besteht in der Schaffung der Grundlagen der Wahrscheinlichkeitstheorie in seiner Arbeit Grundbegriffe der Wahrscheinlichkeitstheorie (in deutsch!) aus dem Jahre 1933.
3
Wahrscheinlichkeitsdichten
4
Die Exponential-Verteilung
5
Die Gauß- oder Normalverteilung
6
Gauß-Bildnis und –Kurve auf 10 DM-Schein
7
Die Cauchy-Verteilung
8
Die Student- oder t-Verteilung Hängt von Parameter n ab!
9
Die Chi-Quadrat-Verteilung Hängt ebenfalls von Parameter n ab!
10
Unabhängigkeit Vier Spielkarten zeigen auf der Vorderseitedie folgenden Aufschriften: 1 Eine Karte wird zufällig gezogen. Ereignisse A, B und C A : Oben steht eine 0 B: In der Mitte steht eine 0 C: Unten steht eine 0 1 0 1 0 1
11
Trotzdem sind die Ereignisse A, B und C nicht unabhängig: d. h. C kann nicht eintreten, wenn A und B eintreten. Man hat zwar:
12
Allgemein definiert man:
13
Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt sich die folgende Tabelle:
14
Also haben wir: Allgemein definiert man:
15
Pfadregel
16
Dann hat man:
17
1.1.2 1.2.22.1.12.1.22.1.3 3.2.13.2.2 3.3.1 1.2.13.3.2 1.1 1.2 2.1 3.1 3.2 3.3 1 2 3 START p(1) p(2) p(3) p(1.1.2 1.1) p(2.1.1 2.1) p(3.3.1 3.3) p(1.2 1) p(3.3 3) p(2.1 2) (Eigentlich z. B. b(1.2.1) statt 1.2.1) Baumdiagramm 1.1.11.2.33.1. 1
18
Wir betrachten eine Urne mit einer roten und 3 grünen Kugeln. 1.Stufe: Eine Kugel wird zufällig gezogen, ihre Farbe notiert. Anschließend werden diese und eine Kugel derselben Farbe in die Urne zurückgelegt. 2. Stufe: Nach dem guten Mischen wird erneut eine Kugel zufällig gezogen und deren Farbe notiert. Urne mit roten und grünen Kugeln
19
START 0 1 0011 3/4 1/4 4/5 1/53/52/5 Baumdiagramm
20
Formel von der totalenWahrscheinlichkeit Einkommensverteilung der Haushalte in einer bestimmten Gegend Anteil der Haushalte, die ein Auto > DM 40 000,- anschaf- fen, in den verschiedenen Einkommensklassen
21
Es ergibt sich: Also nach der Formel für die totale Wahrscheinlichkeit: 5
22
Allgemein: Formel von der totalen Wahrscheinlichkeit
23
Satz von Bayes In einer Stadt vermutet man, dass für die Bevölkerung die folgende Aufteilung in Deutsche, Italiener und Ausländer, die keine Italiener sind, besteht: wobei die letzte Zeile den jeweiligen Anteil von Personen in der Bevölkerungsgruppe angibt, die gerne Spaghetti bestellen.
24
Jemand bestellt in einer Gaststätte Spaghetti. Wie groß ist die Wahrscheinlichkeit, dass dieser Gast ein Deutscher, ein Italiener oder ein nicht-italienischer Aus- länder ist? D: Der Gast ist ein Deutscher I: Der Gast ist ein Italiener A: Der Gast ist ein Ausländer, aber kein Italiener S: Der Gast bestellt Spaghetti
25
Nach der Formel für die totale Wahrscheinlichkeit hat man: Daraus ergibt sich nach dem Satz von Bayes
26
Satz von Bayes
27
Lernen aus Erfahrung Beispiel Eine Urne enthält 4 Kugeln.Wir wissen, dass eine der folgen- den Situationen A 1, A 2 oder A 3 vorliegt: A 1 : eine Kugel ist rot, die drei anderen sind grün A 2 : zwei Kugeln sind rot, die beiden anderen grün A 3 : drei Kugeln sind rot, eine ist grün Die Wahrscheinlichkeiten für die drei Möglichkeiten sind un- bekannt. Wir setzen: P(A 1 ) = p 1 P(A 2 ) = p 2 P(A 3 ) = p 3
28
Wir ziehen aus der Urne m Kugeln mit Zurücklegen. Nehmen wir nun an, dass das Ereignis B geschieht. Bei jedem Zug zeigt sich eine rote Kugel B Dann hat man:
29
Nach dem Satz von Bayes erhalten wir: Ebenso :
30
Für große m nähert sich die bedingte Wahr- scheinlichkeit für A 3 gegeben B dem Wert 1, während sich die bedingtenWahrscheinlich- keiten für A 1 und A 2 dem Wert 0 annähern. Unabhängig von den Werten für p 1, p 2 und p 3 hat man:
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.