Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.

Slides:



Advertisements
Ähnliche Präsentationen
Statistische Methoden I
Advertisements

Masterstudiengang IE (Industrial Engineering)
Kapitel III: Stochastische Modelle im Januar haben wir behandelt: 12/3
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Statistische Methoden I
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Statistische Methoden I WS 2006/2007 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial.
Statistische Methoden II SS 2008
Vorlesung Die Vorlesung Statistische Methoden II nächste Woche vom 6. Juni ( nächste Woche ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit:
Achtung Terminänderung !!!
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Gruppe 2: Henrike Berg Di SR 222 Gruppe 1: Hermann Haase Di SR 222 Gruppe 5: Svenja Schützhold Di SR 222 Gruppe.
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Die Vorlesung Statistische Methoden II findet am (nächste Woche) wegen der Projektwoche nicht wegen der Projektwoche nicht statt.
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
Chi-Quadrat-Test auf Unabhängigkeit I
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Statistische Methoden I
Statistische Methoden I WS 2006/2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
4. Markov-Ketten 4.1. Übergangsmatrizen
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2006/2007 Probeklausur Freitag, 26. Januar statt Vorlesung - Nächste Woche Nächste Woche!
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
FILTER Input: Empirische Zeitreihe Output: Geglättete Zeitreihe.
Statistische Methoden I
Statistische Methoden I SS 2005
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Korrelationsrechnung
Statistische Methoden I WS 2009/2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Montag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
II. Wahrscheinlichkeitstheorie
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird auf Montag, den 17. Mai verlegt! Zeit: 16 Uhr Ort: Kiste Nächste Woche!!!!
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Statistische Methoden II SS 2003
Statistische Maßzahlen
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Probeklausur am 21. Januar 2005 statt Vorlesung. Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Test auf Normalverteilung
Statistische Methoden I WS 2009/2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Montag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Lehrstuhl für Algebra und funktionalanalytische Anwendungen
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Wahrscheinlichkeitstheorie. Laplacescher Wahrscheinlicheitsraum.
 Präsentation transkript:

Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen Gruppe S1: Franz Huwald Di 8: :00 SR 105/106 Gruppe S2: Marcus Vollmer Di 10: :00 SR 105/106 Gruppe S3: Marcus Vollmer Di 12: :00 SR 105/106 Gruppe S4: Stefan Kietzmann Di 12: :00 SR 5 Gruppe S5: Hermann Haase Mi 8:00 – 10:00 SR 105/106 Gruppe S6: Sebastian Grapenthin Mi 10:00 – 12:00 SR 105/106 Gruppe S7: Stefan Voß Mi 10: :00 SR 4 Gruppe S8: Sebastian Grapenthin Mi 12: :00 SR 105/106

SR 105/106 Domstraße 20 Beginn der Übungen nächste Woche SR 4 SR 5 Franz-Mehring-Straße

Institut für Mathematik und Informatik Lehrstuhl für Algebra und funktionalanalytische Anwendungen

Statistische Methoden I+II 2009/2010 Literatur 1) G. Bamberg, F. Baur: Statistik. Oldenbourg 2) G. Bamberg, F. Baur: Statistik-Arbeitsbuch. Oldenbourg 3) L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz: Statistik. Springer 4) J. Schira: Statistische Methoden der VWL und BWL. Pearson Education 5) H. Haase: Stochastik für Betriebswirte. Shaker 6) J. Hartung: Statistik. Oldenbourg 7) R. Schlittgen: Einführung in die Statistik. Oldenbourg 8) A. Quatember: Statistik ohne Angst vor Formeln. Pearson Studium 9) H.-D. Radke: Statistik mit Excel. Markt + Technik

Statistische Methoden I+II 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial 2.1. Der Häufigkeitsbegriff 2.2. Lage- und Streuungsparameter 2.3. Konzentrationsmaße (Lorenz-Kurve) 3. Mehrdimensionales Datenmaterial 3.1. Korrelations- und Regressionsrechnung 3.2. Indexzahlen 3.3. Saisonbereinigung

II. Wahrscheinlichkeitstheorie 1. Laplacesche Wahrscheinlicheitsräume 1.1. Kombinatorische Formeln 1.2. Berechnung von Laplace-Wahrschein- lichkeiten 2. Allgemeine Wahrscheinlichkeitsräume 2.1. Der diskrete Fall 2.2. Der stetige Fall 2.3. Unabhängigkeit und bedingte Wahrscheinlichkeit 3. Zufallsvariablen 3.1. Grundbegriffe 3.2. Erwartungswert und Varianz 3.3. Binomial- und Poisson-Verteilung 3.4. Die Normalverteilung und der Zentrale Grenzwertsatz

4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5. Anwendungen

III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle

3. Tests 3.1. Grundbegriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse

Beschreibende Statistik (= Deskriptive Statistik) Beschreibung von Datenmaterial Vorstufe zur Schließenden Statistik (= Induktive Statistik) Analyse von Datenmaterial, Hypothesen, Prognosen 1. Semester 2. Semester Wahrscheinlichkeitstheorie

4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5. Anwendungen

Literatur zu Markov-Ketten 1) U. Krengel: Einführung in die Wahrscheinlichkeits- theorie und Statistik. Vieweg 2) J.R. Noris: Markov Chains. Cambridge Univ. Press 3) K. Jähnich: Lineare Algebra. Springer 4) H. Haase: Stochastik für Betriebswirte. Shaker

+ - 1/3 1/4

/2 3/4 1/2 1

Endliche Markov-Ketten Der Aktienkurs der ZB-Aktie zeige das folgende Verhalten: - Wenn der Kurs heute gegenüber gestern gestiegen ist, dann steigt er morgen ebenfalls mit der Wahr- scheinlichkeit 2/3 und fällt morgen mit der Wahr- scheinlichkeit 1/3 (gegenüber heute). - Ist jedoch der Kurs heute gegenüber gestern gefallen, dann fällt er morgen ebenfalls mit der Wahr- scheinlichkeit 3/4 und steigt morgen mit der Wahr- scheinlichkeit 1/4 (gegenüber heute).

Wir versehen jeden Tag mit einem Plus (+) oder mit einem Minus (-) je nachdem, ob der Kurs an diesem Tag gegenüber dem Vortag gestiegen oder gefallen ist. Dann hängt die Prognose dafür, ob der Kurs morgen gegenüber heute steigt oder fällt, nur davon ab, ob die Aktie heute mit einem + oder mit einem – versehen ist /3 1/3 1/4 3/4

+ - 1/3 1/4

Problem 1 Problem 1: Wie groß ist die Wahrscheinlichkeit, in 10 Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist? Problem 2 Problem 2: Wie entwickelt sich die Wahrscheinlichkeit, in n Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist, für großes n? Strebt diese Wahrscheinlichkeit für n gegen einen festen Wert? Was passiert, wenn man von einem Minus-Tag aus startet?

/4 1/2 3/4 1/2 1

Die Maus in der Wohnung! Sie geht jeweils von einem Zimmer zu einem zufälligen Nachbarzimmer. Wie groß ist ihre Gewinnchance ? 5 4 KATZE Verlustzustand 1 MAUS Startzustand 2 3 KÄSE Gewinnzustand (Vorlesung Prof. Bandt)

/2 1/3 1/2 1/3 KÄSE KATZE MAUS

m-1 p p p p q q q q m

p p p p q q q q q m Ruin des Spielers

Erneuerung von Geräten (Kartenhaus-Prozess) N

Berechnung der Erneuerungswahrscheinlichkeit für n Erneuerungssatz

Anwendungen von Markov-Ketten Warteschlangen-Modelle Lagerhaltung Krankenstand in einem Betrieb und viele weitere ….