Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.

Slides:



Advertisements
Ähnliche Präsentationen
Masterstudiengang IE (Industrial Engineering)
Advertisements

Kapitel III: Stochastische Modelle im Januar haben wir behandelt: 12/3
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Statistische Methoden II SS 2008
Vorlesung Die Vorlesung Statistische Methoden II nächste Woche vom 6. Juni ( nächste Woche ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit:
Achtung Terminänderung !!!
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Gruppe 2: Henrike Berg Di SR 222 Gruppe 1: Hermann Haase Di SR 222 Gruppe 5: Svenja Schützhold Di SR 222 Gruppe.
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70
Vorlesung Die Vorlesung Statistische Methoden II in 2 Wochen vom 6. Juni ( in 2 Wochen ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit: 14.
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
4. Markov-Ketten 4.1. Übergangsmatrizen
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2006/2007 Probeklausur Freitag, 26. Januar statt Vorlesung - Nächste Woche Nächste Woche!
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
FILTER Input: Empirische Zeitreihe Output: Geglättete Zeitreihe.
Statistische Methoden I
Statistische Methoden I SS 2005
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am nächsten Montag (21. Juni) Zeit: Uhr Ort: Kiste.
Statistische Methoden I WS 2009/2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Montag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Zeit: 14:15 Ort: Hörsaal Loefflerstraße Heute wird die Vorlesung vom vergangenen Freitag nachgeholt! im Anschluss an die heutige reguläre Vorlesung.
II. Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Induktive Statistik. Statistische Struktur (diskreter Fall) Dabei sind:
Die Vorlesung Statistische Methoden I fällt morgen ( ) aus! Zeit: 14:15 Ort: Hörsaal Loefflerstraße Diese Vorlesung wird am nächsten Donnerstag.
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Urnenmodelle. Wahrscheinlichkeitsräume A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov,
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Urnenmodelle. Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)
Probeklausur am 21. Januar 2005 statt Vorlesung. Wahrscheinlichkeitstheorie.
Bedingte Wahrscheinlichkeiten
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Statistische Methoden I WS 2002/2003 Probeklausur Freitag, 13. Dezember statt Vorlesung - Nächsten Freitag!!!
Test auf Normalverteilung
Statistische Methoden I WS 2009/2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Montag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Lehrstuhl für Algebra und funktionalanalytische Anwendungen
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
 Präsentation transkript:

Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen Gruppe S1: Franz Huwald Di 8: :00 SR 105/106 Gruppe S2: Marcus Vollmer Di 10: :00 SR 105/106 Gruppe S3: Marcus Vollmer Di 12: :00 SR 105/106 Gruppe S4: Stefan Kietzmann Di 12: :00 SR 5 Gruppe S5: Hermann Haase Mi 8: :00 SR 105/106 Gruppe S6: Sebastian Grapenthin Mi 10: :00 SR 105/106 Gruppe S7: Stefan Voß Mi 10: :00 SR 4 Gruppe S8: Sebastian Grapenthin Mi 12: :00 SR 105/106

SR 105/106 Domstraße 20 SR 4 SR 5 Franz-Mehring-Straße

Institut für Mathematik und Informatik Lehrstuhl für Algebra und funktionalanalytische Anwendungen

Statistische Methoden I+II 2009/2010 Literatur 1) G. Bamberg, F. Baur: Statistik. Oldenbourg 2) G. Bamberg, F. Baur: Statistik-Arbeitsbuch. Oldenbourg 3) L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz: Statistik. Springer 4) J. Schira: Statistische Methoden der VWL und BWL. Pearson Education 5) H. Haase: Stochastik für Betriebswirte. Shaker 6) J. Hartung: Statistik. Oldenbourg 7) R. Schlittgen: Einführung in die Statistik. Oldenbourg 8) A. Quatember: Statistik ohne Angst vor Formeln. Pearson Studium 9) H.-D. Radke: Statistik mit Excel. Markt + Technik

+ - 1/3 1/4

Die Maus in der Wohnung! Sie geht jeweils von einem Zimmer zu einem zufälligen Nachbarzimmer. Wie groß ist ihre Gewinnchance ? 5 4 KATZE Verlustzustand 1 MAUS Startzustand 2 3 KÄSE Gewinnzustand (Vorlesung Prof. Bandt)

/2 1/3 1/2 1/3 KÄSE KATZE MAUS

m-1 p p p p q q q q m

p p p p q q q q q m Ruin des Spielers

Erneuerung von Geräten (Kartenhaus-Prozess) N

Berechnung der Erneuerungswahrscheinlichkeit für n Erneuerungssatz

Anwendungen von Markov-Ketten Warteschlangen-Modelle Lagerhaltung Krankenstand in einem Betrieb und viele weitere ….

III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle

3. Tests 3.1. Grundbegriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse

Beschreibende Statistik (= Deskriptive Statistik) Beschreibung von Datenmaterial Schließenden Statistik (= Induktive Statistik) Analyse von Datenmaterial, Hypothesen, Prognosen 1. Semester 2.Semester Wahrscheinlich- keitstheorie 1. Semester

Die hypergeometrische Verteilung Notation

Eine Urne enthält n Kugeln, davon N weiße und n - N schwarze. Aus der Urne werden nacheinander m Kugeln ohne Zurücklegen gezogen. Wie groß ist die Wahrscheinlichkeit, genau k weiße Kugeln zu ziehen? Sie beträgt gerade H(n, N, m)(k)!

Schätzung der Zahl der Fische in einem See in Mecklenburg N Fische werden gefangen und markiert Die Fische werden in den See zurückgegeben. Man wartet, bis die markierten Fische sich (möglichst gleichmäßig) im See verteilt haben. Man geht erneut auf Fischzug und fäng m Fische. Von diesen seien k markiert.

Schätzung für die Gesamtzahl der Fische im See:

Statistische Struktur (diskreter Fall) Dabei sind:

Schätzproblem Schätzer

Ω Θ Modell Beobachtung (Stichprobe) Grundgesamtheit (mögliche Beobachtungen) Schätzung

Ω Θ Modell Beobachtung (Stichprobe) Grundgesamtheit (mögliche Beobachtungen) Schätzung E g

Berliner Taxifahrer Ein Berliner Taxifahrer notierte imJanuar 1987 während 5 Schichten mit je 20 Fahrten, welchen Prozentsatz des Fahrpreises lt. Taxameter die Fahrgäste als Trinkgeld gaben.

Stichprobe (diskreter Fall)

Mathematischer Rahmen

Stichprobenfunktionen (Beispiele)

Stichprobenfunktionen Beispiel Taxifahrer

SonntagseinsätzeFeuerwache

Mittlerer quadratischer Fehler Gegeben sind: Statistische Struktur Schätzproblem Als mittleren quadratischen Fehler bezeichnet man die Größe Schätzer

Feuerwache Angepasste Poisson-Verteilungen

Stichproben (stetiger Fall)

Mathematischer Rahmen

Statistische Struktur diskret stetig