Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -

Slides:



Advertisements
Ähnliche Präsentationen
Kapitel III: Stochastische Modelle im Januar haben wir behandelt: 12
Advertisements

Kapitel III: Stochastische Modelle im Januar haben wir behandelt: 12/3
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Statistische Methoden I WS 2006/2007 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial.
Statistische Methoden II SS 2008
Achtung Terminänderung !!!
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Die Vorlesung Statistische Methoden II findet am (nächste Woche) wegen der Projektwoche nicht wegen der Projektwoche nicht statt.
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
4. Markov-Ketten 4.1. Übergangsmatrizen
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2006/2007 Probeklausur Freitag, 26. Januar statt Vorlesung - Nächste Woche Nächste Woche!
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
FILTER Input: Empirische Zeitreihe Output: Geglättete Zeitreihe.
Statistische Methoden I
TESTS TESTS TESTS TESTS TESTS TESTS TESTS.
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Korrelationsrechnung
Zeit: 14:15 Ort: Hörsaal Loefflerstraße Heute wird die Vorlesung vom vergangenen Freitag nachgeholt! im Anschluss an die heutige reguläre Vorlesung.
II. Wahrscheinlichkeitstheorie
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird auf Montag, den 17. Mai verlegt! Zeit: 16 Uhr Ort: Kiste Nächste Woche!!!!
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Induktive Statistik. Statistische Struktur (diskreter Fall) Dabei sind:
Wahrscheinlichkeitsräume. A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov, Russland, geboren.
Die Vorlesung Statistische Methoden I fällt morgen ( ) aus! Zeit: 14:15 Ort: Hörsaal Loefflerstraße Diese Vorlesung wird am nächsten Donnerstag.
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Urnenmodelle. Wahrscheinlichkeitsräume A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov,
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Urnenmodelle. Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)
Probeklausur am 21. Januar 2005 statt Vorlesung. Wahrscheinlichkeitstheorie.
Bedingte Wahrscheinlichkeiten
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Grundbegriffe der (deskriptiven) Statistik
Statistische Methoden I WS 2002/2003 Probeklausur Freitag, 13. Dezember statt Vorlesung - Nächsten Freitag!!!
Test auf Normalverteilung
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Lehrstuhl für Algebra und funktionalanalytische Anwendungen
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Wahrscheinlichkeitstheorie. Laplacescher Wahrscheinlicheitsraum.
Stochastische Modelle in der Biologie (C. Bandt 2004) Die Folien sind nur Übersicht, Einzelheiten in der Vorlesung 1. Irrfahrten mit Endzuständen Definition:
 Präsentation transkript:

Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -

4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5. Anwendungen

+ - 1/3 1/4

/2 3/4 1/2 1

Endliche Markov-Ketten Der Aktienkurs der ZB-Aktie zeige das folgende Verhalten: - Wenn der Kurs heute gegenüber gestern gestiegen ist, dann steigt er morgen ebenfalls mit der Wahr- scheinlichkeit 2/3 und fällt morgen mit der Wahr- scheinlichkeit 1/3 (gegenüber heute). - Ist jedoch der Kurs heute gegenüber gestern gefallen, dann fällt er morgen ebenfalls mit der Wahr- scheinlichkeit 3/4 und steigt morgen mit der Wahr- scheinlichkeit 1/4 (gegenüber heute).

Wir versehen jeden Tag mit einem Plus (+) oder mit einem Minus (-) je nachdem, ob der Kurs an diesem Tag gegenüber dem Vortag gestiegen oder gefallen ist. Dann hängt die Prognose dafür, ob der Kurs morgen gegenüber heute steigt oder fällt, nur davon ab, ob die Aktie heute mit einem + oder mit einem – versehen ist /3 1/3 1/4 3/4

+ - 1/3 1/4

Problem 1 Problem 1: Wie groß ist die Wahrscheinlichkeit, in 10 Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist? Problem 2 Problem 2: Wie entwickelt sich die Wahrscheinlichkeit, in n Tagen einen Minus-Tag zu haben, wenn heute ein Plus-Tag ist, für großes n? Strebt diese Wahrscheinlichkeit für n gegen einen festen Wert? Was passiert, wenn man von einem Minus-Tag aus startet?

/4 1/2 3/4 1/2 1

Die Maus in der Wohnung! Sie geht jeweils von einem Zimmer zu einem zufälligen Nachbarzimmer. Wie groß ist ihre Gewinnchance ? 5 4 KATZE Verlustzustand 1 MAUS Startzustand 2 3 KÄSE Gewinnzustand (Vorlesung Prof. Bandt)

/2 1/3 1/2 1/3 KÄSE KATZE MAUS

m-1 p p p p q q q q m

p p p p q q q q q m Ruin des Spielers

Anwendungen von Markov-Ketten Warteschlangen-Modelle Lagerhaltung Krankenstand in einem Betrieb und viele weitere ….

III. Induktive Statistik 1. Schätztheorie 1.1. Grundbegriffe, Stichproben 1.2. Maximum-Likelihood-Schätzer 1.3. Erwartungstreue Schätzer 1.4. Konfidenzintervalle 1.5. Spezialfall Binomial-Verteilung 2. Spezialfall Normalverteilung 2.1. Student- und Chi-Quadrat-Verteilung 2.2. Konfidenzintervalle

3. Tests 3.1. Grundbegriffe 3.2. Tests einfacher Hypothesen (Neyman-Pearson-Test) 3.3. Tests zusammengesetzter Hypothesen 3.4. Vergleich zweier unabhängiger Stichproben 3.5. Chi-Quadrat-Tests 3.6. Kolmogorov-Smirnov-Test 3.7. Einfache Varianzanalyse

Beschreibende Statistik (= Deskriptive Statistik) Beschreibung von Datenmaterial Schließenden Statistik (= Induktive Statistik) Analyse von Datenmaterial, Hypothesen, Prognosen 1. Semester 2.Semester Wahrscheinlich- keitstheorie 1. Semester

Die hypergeometrische Verteilung Notation

Eine Urne enthält n Kugeln, davon N weiße und n - N schwarze. Aus der Urne werden nacheinander m Kugeln ohne Zurücklegen gezogen. Wie groß ist die Wahrscheinlichkeit, genau k weiße Kugeln zu ziehen? Sie beträgt gerade H(n, N, m)(k)!

Schätzung der Zahl der Fische in einem See in Mecklenburg N Fische werden gefangen und markiert Die Fische werden in den See zurückgegeben. Man wartet, bis die markierten Fische sich (möglichst gleichmäßig) im See verteilt haben. Man geht erneut auf Fischzug und fäng m Fische. Von diesen seien k markiert.

Schätzung für die Gesamtzahl der Fische im See:

Statistische Struktur (diskreter Fall) Dabei sind:

Schätzproblem Schätzer

Ω Θ Modell Beobachtung (Stichprobe) Grundgesamtheit (mögliche Beobachtungen) Schätzung

Ω Θ Modell Beobachtung (Stichprobe) Grundgesamtheit (mögliche Beobachtungen) Schätzung E g

Berliner Taxifahrer Ein Berliner Taxifahrer notierte imJanuar 1987 während 5 Schichten mit je 20 Fahrten, welchen Prozentsatz des Fahrpreises lt. Taxameter die Fahrgäste als Trinkgeld gaben.

Stichprobe (diskreter Fall)

Mathematischer Rahmen

Stichprobenfunktionen (Beispiele)

Stichprobenfunktionen Beispiel Taxifahrer

SonntagseinsätzeFeuerwache

Mittlerer quadratischer Fehler Gegeben sind: Statistische Struktur Schätzproblem Als mittleren quadratischen Fehler bezeichnet man die Größe Schätzer

Feuerwache Angepasste Poisson-Verteilungen

Stichproben (stetiger Fall)

Mathematischer Rahmen

Statistische Struktur diskret stetig