Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag 10.00 - 12.30 (Pause: 11.30 - 11.45) Ort:Hörsaal Loefflerstraße Übungen.

Slides:



Advertisements
Ähnliche Präsentationen
Masterstudiengang IE (Industrial Engineering)
Advertisements

Forschungsstrategien Johannes Gutenberg Universität Mainz
Forschungsstatistik II Prof. Dr. G. Meinhardt SS 2006 Fachbereich Sozialwissenschaften, Psychologisches Institut Johannes Gutenberg Universität Mainz KLW-18.
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.
Statistische Methoden II SS 2008
Vorlesung Die Vorlesung Statistische Methoden II nächste Woche vom 6. Juni ( nächste Woche ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit:
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Gruppe 2: Henrike Berg Di SR 222 Gruppe 1: Hermann Haase Di SR 222 Gruppe 5: Svenja Schützhold Di SR 222 Gruppe.
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
M-L-Schätzer Erwartungswert
Die Vorlesung Statistische Methoden II findet am (nächste Woche) wegen der Projektwoche nicht wegen der Projektwoche nicht statt.
SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Statistische Methoden I WS 2006/2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
Statistische Methoden I WS 2004/2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Hier noch ein Beispiel zur bedingten Wahrscheinlichkeit Drei Personen A, B und C befinden sich im Gefängnis. Einer von den dreien ist zum Tode verurteilt,
Statistische Methoden I SS 2005
TESTS TESTS TESTS TESTS TESTS TESTS TESTS.
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
II. Wahrscheinlichkeitstheorie
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird auf Montag, den 17. Mai verlegt! Zeit: 16 Uhr Ort: Kiste Nächste Woche!!!!
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Induktive Statistik. Statistische Struktur (diskreter Fall) Dabei sind:
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt sich die folgende Tabelle:
Statistische Methoden I WS 2002/2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Bedingte Wahrscheinlichkeiten
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Probeklausur Die Probeklausur findet am anstelle der Vorlesung statt. 13. Juni 2003 Nächste Woche!!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Grundbegriffe der (deskriptiven) Statistik
Test auf Normalverteilung
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Stochastik ganz kurz Beispiel diskret Würfelwurf Beispiel stetig
K. Desch - Statistik und Datenanalyse SS05
 Präsentation transkript:

Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen Gruppe 3: Marcus Vollmer Di Gruppe 1: Melanie Hinz Di Gruppe 6: Melanie Hinz Di Gruppe 4: Hermann Haase Mi Gruppe 5: Hermann Haase Mi Gruppe 2: Rüdiger Zeller Mi Ort: SR 222 Fleischmannstraße 6, 2. OG

Statistische Struktur diskret stetig

Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer

Der Parameter beste Erklärung ist die beste Erklärung für die Beobachtung

Schätzung der Zahl der Fische in einem See in Mecklenburg N Fische werden gefangen und markiert Die Fische werden in den See zurückgegeben. Man wartet, bis die markierten Fische sich (möglichst gleichmäßig) im See verteilt haben. Man geht erneut auf Fischzug und fäng m Fische. Von diesen seien k markiert.

Schätzung für die Gesamtzahl der Fische im See: ist M-L-Schätzer !

Der Logharithmus ln x ist streng monoton wachsend

Beispiel Poisson-Verteilung Stichprobe vom Umfang n mit Poisson-verteilter Stich- Probenvariablen (Intensität: ) M-L-Schätzer für oder

Likelihood-Funktion

Beispiel Bernoulli-Verteilung Stichprobe vom Umfang n mit Bernoulli-verteilter Stichprobenvariablen (p: Wahrscheinlichkeit des Ereignisses) M-L-Schätzer für p wieder gegeben durch:

Maximum-Likelihood-Schätzer (stetiger Fall) Likelihood-Funktion mit oder M-L-Schätzer

Der Parameter beste Erklärung ist die beste Erklärung für die Beobachtung

Die Gauß- oder Normalverteilung

Gauß-Bildnis und –Kurve auf 10 DM-Schein

Dichte Verteilung Verteilungsfunktion

Erwartungswert Varianz

Wichtige Eigenschaft der Normalverteilung Für unabhängige normalverteilteZufallsvariablen X und Y hat man

Verwendung der Tafel für die Normalvertreilung

Normalverteilte Stichprobenvariable M-L-Schätzer Erwartungswert Hier spielt es keine Rolle, ob die Varianz bekannt ist oder nicht. In jedem Fall gilt:

Normalverteilte Stichprobenvariable M-L-Schätzer Varianz bekannt

Normalverteilte Stichprobenvariable M-L-Schätzer Varianz unb ekannt

Übersicht

Beispiel Äpfeln Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten italienischen Anbaugebiet

Erwartungstreue Schätzer Wenn der Parameter selbst geschätzt werden soll: Wenn ein allgemeines statistisches Problem vorliegt: Dabei bedeutet der Index, dass der Erwartungswert bzgl. des W.maßes zum Parameter genommen wird.

Schätzung des Erwartungswertes der Stichprobenvariablen X Statistisches Problem gegeben durch: Erwartungstreuer Schätzer:

Schätzung der Varianz der Stichprobenvariablen X Statistisches Problem gegeben durch: Erwartungstreuer Schätzer: Erwartungswert bekannt

Schätzung der Varianz der Stichprobenvariablen X Statistisches Problem gegeben durch: Erwartungstreuer Schätzer: Erwartungswert unbekannt

Normalverteilte Stichprobenvariable Erwartungstreuer Schätzer für den Erwarungswert Hier spielt es wieder keine Rolle, ob die Varianz bekannt ist oder nicht. In jedem Fall gilt: erwartungstreu ist erwartungstreu

Normalverteilte Stichprobenvariable Erwartungstreuer Schätzer für die Varianz bekannt erwartungstreu ist erwartungstreu

Normalverteilte Stichprobenvariable Erwartungstreuer Schätzer für die Varianz unb ekannt erwartungstreu ist erwartungstreu Kein M-L-Schätzer!!

Übersicht erwartungstreu erwartungstreu erwartungstreu nicht erwartungstreu