Wahrscheinlichkeitstheorie
Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales Datenmaterial 2.1. Der Häufigkeitsbegriff 2.2. Lage- und Streuungsparameter 2.3. Konzentrationsmaße (Lorenz-Kurve) 3. Mehrdimensionales Datenmaterial 3.1. Korrelations- und Regressionsrechnung 3.2. Indexzahlen 3.3. Saisonbereinigung
II. Wahrscheinlichkeitstheorie 1. Laplacesche Wahrscheinlicheitsräume 1.1. Kombinatorische Formeln 1.2. Berechnung von Laplace-Wahrschein- lichkeiten 2. Allgemeine Wahrscheinlichkeitsräume 2.1. Der diskrete Fall 2.2. Der stetige Fall 2.3. Unabhängigkeit und bedingte Wahrscheinlichkeit 3. Zufallsvariablen 3.1. Grundbegriffe 3.2. Erwartungswert und Varianz 3.3. Binomial- und Poisson-Verteilung 3.4. Die Normalverteilung und der Zentrale Grenzwertsatz
4. Markov-Ketten 4.1. Übergangsmatrizen 4.2. Grenzverhalten irreduzibler Markov-Ketten 4.3. Gewinnwahrscheinlichkeiten 4.4. Beispiel Ruin der Spieler 4.5. Anwendungen
Laplacescher Wahrscheinlicheitsraum
Wahrscheinlichkeitstheoretische Interpretation von Mengenoperationen Vereinigung Durchschnitt
Differenz Komplement
Wahrscheinlichkeitsräume
Eigenschaften eines Wahrscheinlichkeitsmaßes Daraus ergeben sich:
Das Ziegenproblem grün: Entscheidung beibehalten rot: Entscheidung ändern
1 A 2 Z 3 Z 2 Z 3 Z 3 Z 2 Z 1 A 1 A 2 Z 3 Z 3 Z 2 Z 1 A 1 A 1/3 1/2
1 A 2 Z 3 Z 2 Z 3 Z 3 Z 2 Z 1 A 1 A 2 Z 3 Z 3 Z 2 Z 1 A 1 A 1/3 1/2
Urnenmodelle
Wahrscheinlichkeitsräume
Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)
Wahrscheinlichkeitsräume
Die Poisson-Verteilung
Man erhält eine Wahrscheinlichkeitsverteilung, weil gilt: Notation
Die Binomialverteilung
Man erhält eine Wahrscheinlichkeitsverteilung, weil gilt: Notation
Die geometrische Verteilung Man erhält eine Wahrscheinlichkeitsverteilung, weil gilt:
Die hypergeometrische Verteilung Notation
Eine Urne enthält n Kugeln, davon N weiße und n - N schwarze. Aus der Urne werden nacheinander m Kugeln ohne Zurücklegen gezogen. Wie groß ist die Wahrscheinlichkeit, genau k weiße Kugeln zu ziehen? Sie beträgt gerade H(n, N, m)(k)!
Wahrscheinlichkeitsräume
A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov, Russland, geboren. Nach der Schule arbeitete er zunächst als Eisenbahnschaffner. Nebenbei schrieb er eine Abhandlung über die Newtonsche Mechanik. Bald ging er aber an die Moskauer Universität, und seine Entwicklung zu einem der bedeutendsten Mathematiker des vergangenen Jahrhunderts begann. Eine seiner großen Leistungen auf dem Gebiet der Stochastik besteht in der Schaffung der Grundlagen der Wahrscheinlichkeitstheorie in seiner Arbeit Grundbegriffe der Wahrscheinlichkeitstheorie (in deutsch!) aus dem Jahre 1933.
Wahrscheinlichkeitsdichten
Die Exponential-Verteilung
Die Gauß- oder Normalverteilung
Gauß-Bildnis und –Kurve auf 10 DM-Schein
Die Cauchy-Verteilung
Die Student- oder t-Verteilung Hängt von Parameter n ab!
Die Chi-Quadrat-Verteilung Hängt ebenfalls von Parameter n ab!