Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag 10.00 - 12.30 (Pause: 11.30 - 11.45) Ort:Hörsaal Makarenkostraße (Kiste)

Slides:



Advertisements
Ähnliche Präsentationen
Masterstudiengang IE (Industrial Engineering)
Advertisements

Forschungsstatistik II Prof. Dr. G. Meinhardt SS 2006 Fachbereich Sozialwissenschaften, Psychologisches Institut Johannes Gutenberg Universität Mainz KLW-18.
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Nachholung der Vorlesung vom Freitag
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.
Statistische Methoden II SS 2008
Vorlesung Die Vorlesung Statistische Methoden II nächste Woche vom 6. Juni ( nächste Woche ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit:
Achtung Terminänderung !!!
Nachholung der Vorlesung vom Freitag
Konfidenzintervalle Intervallschätzung
Gruppe 2: Henrike Berg Di SR 222 Gruppe 1: Hermann Haase Di SR 222 Gruppe 5: Svenja Schützhold Di SR 222 Gruppe.
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
M-L-Schätzer Erwartungswert
Die Vorlesung Statistische Methoden II findet am (nächste Woche) wegen der Projektwoche nicht wegen der Projektwoche nicht statt.
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
Statistische Methoden I WS 2004/2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Statistische Methoden I SS 2005
TESTS TESTS TESTS TESTS TESTS TESTS TESTS.
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am nächsten Montag (21. Juni) Zeit: Uhr Ort: Kiste.
II. Wahrscheinlichkeitstheorie
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird auf Montag, den 17. Mai verlegt! Zeit: 16 Uhr Ort: Kiste Nächste Woche!!!!
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Induktive Statistik. Statistische Struktur (diskreter Fall) Dabei sind:
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Statistische Methoden I WS 2002/2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Probeklausur Die Probeklausur findet am anstelle der Vorlesung statt. 13. Juni 2003 Nächste Woche!!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Grundbegriffe der (deskriptiven) Statistik
Approximative Konfidenzintervalle im Bernoulli-Fall II
Statistische Methoden I WS 2002/2003 Probeklausur Freitag, 13. Dezember statt Vorlesung - Nächsten Freitag!!!
Test auf Normalverteilung
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Statistische Methoden II SS 2010 Vorlesung:Prof. Dr. Michael Schürmann Zeit: Freitag 13:15 -15:45 (Pause 14:45) Ort:HS Makarenkostraße (Kiste) Übungen.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Binomialverteilung: Beispiel
Eigenschaften der OLS-Schätzer
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 1375 SS März 2005.
Tutorium Statistik II Übung IV Philipp Schäpers Mi – 11.45
 Präsentation transkript:

Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste) Übungen Gruppe 2: Henrike Berg Di SR 222 Gruppe 1: Hermann Haase Di SR 222 Gruppe 5: Svenja Schützhold Di SR 222 Gruppe 7: Sebastian Grapenthin Di 14: :00 HS 11 Gruppe 8: Svenja Schützhold Di 16: :00 SR 5 Gruppe 4: Sabine Storandt Mi SR 222 Gruppe 3: Hermann Haase Mi SR 222 Gruppe 6: Sebastian Grapenthin Mi SR 3 SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70 HS 11 : Domstraße 9a (Hist. Institut)

Die Vorlesung am 2. Mai wird verlegt! Die Vorlesung findet am Mittwoch, von 14 bis 16 Uhr im Hörsaal Makarenkostraße statt.

Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit, eine Beobachtung zu machen, für die der wahre Parameter im zugehörigen Intervall liegt, größer oder gleich 1 -

Tschebyschev Die Ungleichung von Tschebyschev

Niveau klein Das Niveau wird klein gewählt. (Wir nehmen in unseren Beispielen in den meisten Fällen = 0.05 oder = 0.1) Zusammenhang Es gibt aber einen Zusammenhang zwischen der Breite der Konfidenzintervalle und dem Niveau: Niveau kleiner Intervall breiter Die Intervallbreite soll möglichst gering sein.

Beispiel Äpfeln Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten italienischen Anbaugebiet Schätzer von

Wichtige Eigenschaft der Normalverteilung Für unabhängige normalverteilte Zufallsvariablen X und Y hat man

Konfidenzintervall für den Erwartungswert Varianz bekannt Annahme: Konfidenzintervalle: wobei

In unserem Beispiel: Bei einem Niveau von = 0.05 ist 1 - /2 = Es ergibt sich: und

Verwendung der Tafel für die Normalvertreilung

Tafel für die Verteilungsfunktion bei Normalverteilung

Beispiel Kaufhaus-Konzern Kauf würde in Erwägung gezogen Kauf würde nicht in Erwägung gezogen

Der Zentrale Grenzwertsatz

Approximative Konfidenzintervalle im Bernoulli-Fall I Konfidenzintervall zum Niveau

Approximative Konfidenzintervalle im Bernoulli-Fall II Vereinfachung für großes n (n 100)

Die Chi-Quadrat-Verteilung Hängt von Parameter n ab!

Die Chi-Quadrat-Verteilung Wahrscheinlichkeitsdichte Die Konstante c ist dabei: : Gamma-Funktion

Die Student- oder t-Verteilung Hängt ebenfalls von Parameter n ab!

Die Student- oder t-Verteilung Wahrscheinlichkeitsdichte Die Konstante d ist dabei:

unabhängige Für n unabhängige Zufallsvariablen mit hat man: Mathematische Bedeutung der Chi-Quadrat-Verteilung

unabhängige Für unabhängige Zufallsvariablen W und U mit hat man: Mathematische Bedeutung der t-Verteilung

Konfidenzintervall für den Erwartungswert Varianz unbekannt Student-Verteilung (oder t-Verteilung)

Konfidenzintervall für die Varianz Erwartungswert bekannt Einseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert bekannt zweiseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert unbekannt Einseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert unbekannt Zweiseitig Chi-Quadrat- Verteilung

Übersicht I Konfidenzintervalle für den Erwartungswert

Übersicht II Konfidenzintervalle für die Varianz

Rechenbeispiel Stichprobe vom Umfang n = Stichprobenfunktionen

Tafel für die Verteilungsfunktion bei Normalverteilung

Fehler: 0,831

Fehler: 0,831

Fehler: 0,831

Fehler: 0,831

Konfidenzintervalle für diese konkrete Stichprobe 1.Fall 2.Fall 3.Fall

6.Fall Fall 4.Fall

Beispiel Äpfeln Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten italienischen Anbaugebiet

Konfidenzintervalle für diese konkrete Stichprobe Die anderen Fälle zur Übung empfohlen!! 2.Fall 5.Fall