Gekoppelte Schwingungen Mechanisch – Elektrisch
Inhalt Gekoppelte Pendel Gekoppelte elektrische Schwingkreise
Gekoppelte Pendel: Symmetrie des Aufbaus Spiegelebene
Erste Eigenschwingung Spiegelebene
Zweite Eigenschwingung „Umfärbende“ Spiegelebene „Umfärbend“ bezeichnet die Eigenschaft, dass die Auslenkung des Pendels links aus der Spiegelung der des Pendels rechts folgt, wenn das Spiegelbild „umgefärbt“, d. h. das Vorzeichen der gespiegelten Auslenkung mit „ -1“ multipliziert wird
Die Eigenschwingungen gekoppelter Pendel
„Erzwungene Schwingung“ im „Gekoppelten Pendel“ Bei Auslenkung nur eines von zwei identischen, durch eine Feder gekoppelter Pendel entsteht ein System aus Antreibender und Angetriebener Oszillator Das ist ein System mit „erzwungener Schwingung“ im Zustand der Resonanz, deshalb gilt: Der antreibende Oszillator Überträgt bei jeder Schwingung Energie auf den angetriebenen Kommt letztlich („vollständig erschöpft“) zur Ruhe und die Oszillatoren „tauschen die Rollen“
Variation der Amplituden bei Start eines Oszillators Oha
Die Auslenkungen beider Pendel bei Überlagerung der Eigenschwingungen zeigen die Form einer Schwebung Die Periode der Schwebung ist in diesem Beispiel etwa das 20-fache der Periode der Eigenschwingung eines Pendels
Versuch: Gekoppelte Pendel Verhalten eines einzelnen Pendels Kopplung über die Feder Schwebungen durch Überlagerung von zwei Schwingungen unterschiedlicher Frequenz Suche nach den Eigenfrequenzen durch spezielle Startbedingungen Unterschiedliche Eigenschwingungen zeigen unterschiedliche Symmetrie
Effekt der Kopplung Ohne Kopplung: Beide Oszillatoren zeigen die gleiche Eigenfrequenz Mit Kopplung: Zwei „Schwingungsmoden“ mit unterschiedlichen Eigenfrequenzen Die Symmetrie der Auslenkungen beider Moden ist unterschiedlich
Elektrischer Schwingkreis
Zwei gleichartige elektrische Schwingkreise Was geschieht bei Kopplung über das magnetische Feld?
In gleicher Phase schwingende elektrischer Schwingkreise
Gleichphasige Kopplung elektrischer Schwingkreise über das magnetische Feld Gleichgerichteter Strom: Feld im Überlappungsbereich wie im Innern der Spulen
In Gegenphase schwingende elektrischer Schwingkreise
Gegenphasige Kopplung elektrischer Schwingkreise über das magnetische Feld Gegenläufiger Strom in den Spulen: Im Überlappungsbereich kehrt sich das Feld um
Die Amplituden der Schwingkreise bei Überlagerung beider Eigenschwingungen zeigen die Form einer „Schwebung“
Versuch: Gekoppelte elektrische Schwingkreise Verhalten eines einzelnen Schwingkreises Kopplung über die Feldstärken Schwebungen durch Überlagerung von zwei Schwingungen unterschiedlicher Frequenz Suche nach den Eigenfrequenzen mit Fourier-Analyse
Über das Magnetfeld gekoppelte Schwingkreise Schwebungen aufgrund des Austauschs der Energie zwischen den Schwingkreisen Grund: Überlagerung der beiden Eigenschwingungen mit aufgrund der Kopplung leicht unterschiedlichen Frequenzen unterschiedlichen Symmetrie-Eigenschaften Erste Eigenschwingung mit „gleichphasigen“ Feldstärken in beiden Kreisen Zweite Eigenschwingung mit „gegenphasigen“ Feldstärken in beiden Kreisen
Effekt der Kopplung Ohne Kopplung: Beide Oszillatoren zeigen die gleiche Eigenfrequenz Mit Kopplung: Zwei „Schwingungsmoden“ mit unterschiedlichen Eigenfrequenzen und unterschiedlichen Symmetrie Eigenschaften Überlagerung beider Schwingungen führt zu Schwebungen
Finis