Konfidenzintervalle Intervallschätzung

Slides:



Advertisements
Ähnliche Präsentationen
Masterstudiengang IE (Industrial Engineering)
Advertisements

Wie schätzt man die Zahl der Fische
Wahrscheinlichkeitstheorie
Induktive Statistik.
Statistische Methoden I
Statistische Methoden I
Nachholung der Vorlesung vom Freitag
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Nachholung der Vorlesung vom Freitag
Die Vorlesung Statistische Methoden II findet am (nächste Woche) nicht nicht statt. Diese Vorlesung wird zu einem späteren Termin, der noch bekannt.
Statistische Methoden II SS 2008
Vorlesung Die Vorlesung Statistische Methoden II nächste Woche vom 6. Juni ( nächste Woche ) wird auf den 4. Juni (Mittwoch) vorverlegt ! 14 – 16 Zeit:
Nachholung der Vorlesung vom Freitag
Ab nächster Woche wird die Übungsgruppe Gruppe 2: Henrike Berg Di SR 222 wegen Personalmangel eingestellt.
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
M-L-Schätzer Erwartungswert
Die Vorlesung Statistische Methoden II findet am (nächste Woche) wegen der Projektwoche nicht wegen der Projektwoche nicht statt.
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
SR 222 : Fleischmannstraße 6 SR : Loefflerstraße 70
Chi-Quadrat-Test auf Unabhängigkeit I
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Statistische Methoden I SS 2005
TESTS TESTS TESTS TESTS TESTS TESTS TESTS.
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am nächsten Montag (21. Juni) Zeit: Uhr Ort: Kiste.
II. Wahrscheinlichkeitstheorie
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird auf Montag, den 17. Mai verlegt! Zeit: 16 Uhr Ort: Kiste Nächste Woche!!!!
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Induktive Statistik. Statistische Struktur (diskreter Fall) Dabei sind:
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Bedingte Wahrscheinlichkeiten
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Probeklausur Die Probeklausur findet am anstelle der Vorlesung statt. 13. Juni 2003 Nächste Woche!!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Approximative Konfidenzintervalle im Bernoulli-Fall II
Test auf Normalverteilung
Chi-Quadrat-Tests. Satz von Karl Pearson I X: Stichprobenvariable, die r > 2 verschieden Werte annehmen kann: Die Verteilung von X ist durch einen Wahrscheinlichkeitsvektor.
Klausur am :00 bis 13:00 Hörsaal Loefflerstraße und Hörsaal Makarenkostraße.
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
Deskriptive Statistik
Sportwissenschaftliche Forschungsmethoden SS Statistischer Test.
Eigenschaften der OLS-Schätzer
STATISIK LV Nr.: 1375 SS März 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 1375 SS März 2005.
Konfidenzintervall und Testen für den Mittelwert und Anteile
Tutorium Statistik II Übung IV Philipp Schäpers Mi – 11.45
Stochastik ganz kurz Beispiel diskret Würfelwurf Beispiel stetig
/ SES.125 Parameterschätzung
 Präsentation transkript:

Konfidenzintervalle Intervallschätzung Jeder Beobachtung  wird ein Intervall C() der reellen Zahlen zugeordnet Niveau  Dabei ist die Wahrscheinlichkeit, eine Beobachtung zu machen, für die der wahre Parameter im zugehörigen Intervall liegt, größer oder gleich 1 - 

Die Ungleichung von Tschebyschev

Niveau Das Niveau  wird „klein“ gewählt. (Wir nehmen in unseren Beispielen in den meisten Fällen  = 0.05 oder  = 0.1) Die Intervallbreite soll möglichst gering sein. Es gibt aber einen Zusammenhang zwischen der Breite der Konfidenzintervalle und dem Niveau: Niveau kleiner Intervall breiter

Beispiel Gewicht von Äpfeln Schätzer von  Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten italienischen Anbaugebiet Schätzer von 

Wichtige Eigenschaft der Normalverteilung Für unabhängige normalverteilte Zufallsvariablen X und Y hat man

Konfidenzintervall für den Erwartungswert Varianz bekannt Annahme: Konfidenzintervalle: wobei

In unserem Beispiel: Bei einem Niveau von  = 0.05 ist 1 - /2 = 0.975. Es ergibt sich: und

für die Normalvertreilung Verwendung der Tafel für die Normalvertreilung

Tafel für die Verteilungsfunktion bei Normalverteilung

Beispiel Kaufhaus-Konzern Kauf würde in Erwägung gezogen Kauf würde nicht in Erwägung gezogen 572 1428

Der Zentrale Grenzwertsatz

Approximative Konfidenzintervalle im Bernoulli-Fall I Konfidenzintervall zum Niveau 

Approximative Konfidenzintervalle im Bernoulli-Fall II Vereinfachung für großes n n  100

Die Chi-Quadrat-Verteilung Hängt von Parameter n ab!

Die Chi-Quadrat-Verteilung Wahrscheinlichkeitsdichte Die Konstante c ist dabei:  : Gamma-Funktion

Die Student- oder t-Verteilung Hängt ebenfalls von Parameter n ab!

Die Student- oder t-Verteilung Wahrscheinlichkeitsdichte Die Konstante d ist dabei:

Mathematische Bedeutung der Chi-Quadrat-Verteilung Für n unabhängige Zufallsvariablen mit hat man:

Mathematische Bedeutung der t-Verteilung Für unabhängige Zufallsvariablen W und U mit hat man:

Konfidenzintervall für den Erwartungswert Varianz unbekannt Student-Verteilung (oder t-Verteilung)

Konfidenzintervall für die Varianz Erwartungswert bekannt Einseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert bekannt zweiseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert unbekannt Einseitig Chi-Quadrat- Verteilung

Konfidenzintervall für die Varianz Erwartungswert unbekannt Zweiseitig Chi-Quadrat- Verteilung

Übersicht I Konfidenzintervalle für den Erwartungswert

Übersicht II Konfidenzintervalle für die Varianz

3.5 7.2 5.0 4.3 7.9 Rechenbeispiel Stichprobe vom Umfang n = 5 3.5 7.2 5.0 4.3 7.9 Stichprobenfunktionen

Tafel für die Verteilungsfunktion bei Normalverteilung

Fehler: 0,831

Fehler: 0,831

Fehler: 0,831

Fehler: 0,831

für diese konkrete Stichprobe Konfidenzintervalle für diese konkrete Stichprobe 1.Fall 2.Fall 3.Fall

4.Fall 18.28 5.Fall 6.Fall

Beispiel Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten italienischen Anbaugebiet

für diese konkrete Stichprobe Konfidenzintervalle für diese konkrete Stichprobe 2.Fall 5.Fall Die anderen Fälle zur Übung empfohlen!!

TESTS TESTS TESTS TESTS TESTS TESTS TESTS

Beispiel Gewicht von Äpfeln Gewicht von Äpfeln der Sorte Cox-Orange aus einem bestimmten Anbaugebiet

Der Besitzer P einer Apfelplantage im Kraichgau behauptet gegenüber dem Großhändler G aus Sinsheim, dass die Äpfel seiner Sorte Cox-Orange aus der Lage „Sonnenstrahl“ dieses Jahr ein mittleres Gewicht von wenigstens 142 g aufweisen. G schlägt daraufhin P das folgende Verfahren vor: Die beiden greifen zufällig 16 Äpfel aus der diesjährigen Sonnenstrahl-Lage heraus und bestimmen deren Gewicht. Das arithmetische Mittel x und die empirische Streuung s der Apfelgewichte setzen Sie dann in die folgende Zauber- formel ein: y = x + 0,438 s

Ist 142 größer als der errechnete Wert y, dann wird G nicht kaufen, andernfalls kommen G und P ins Geschäft. Wie groß ist die Wahrscheinlichkeit, dass G nicht kauft, obwohl das mittlere Apfelgewicht in Wirklichkeit über 142 g lag?

Worum es geht Man möchte „testen“, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Formulierung einer Hypothese Nullhypothese In der Statistik kann man nie ganz sicher sein. Die „Irrtumswahrscheinlichkeit“ sollte wenigstens klein sein. Beobachtung (Stichprobe) Vorgabe: „Irrtumswahrscheinlichkeit“ Entscheidung

Mathematischer Rahmen I TESTS Mathematischer Rahmen I Gegeben sind: Statistische Struktur Stetiger Fall Diskreter Fall Testproblem (Hypothese) Nullhypothese Niveau 

Ablehnungsbereich Mathematischer Rahmen II Test gegeben durch: TESTS Mathematischer Rahmen II Test gegeben durch: Ablehnungsbereich Teilmenge der Grundgesamtheit : Menge aller Beobachtungen , die zur Ablehnung der Hypothese führen

Mathematischer Rahmen III TESTS Mathematischer Rahmen III Beobachtung    (Stichprobe) Entweder Oder Beobachtung liegt im Annahmebereich Beobachtung liegt im Ablehnungsbereich Hypothese annehmen! Hypothese ablehnen!

Fehler erster und zweiter Art

Entscheidung Hypothese akzeptiert Hypothese abgelehnt Realität Hypothese wahr Fehler 1. Art Hypothese falsch Fehler 2. Art

Niveau und Macht Obere Grenze für die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen Niveau Wahrscheinlichkeit, einen Fehler 2. Art zu begehen, wenn der wahre Parameterwert in dem Punkt liegt Macht in einem Punkt der Alternative

2 Würfel Fairer Würfel ? 1/6 Gezinkter Würfel ? 1/5

Tafel für die Verteilungsfunktion bei Normalverteilung