Grundbegriffe der (deskriptiven) Statistik

Slides:



Advertisements
Ähnliche Präsentationen
Grundlagen der Wahrscheinlichkeitsrechnung - Verteilungen -
Advertisements

Masterstudiengang IE (Industrial Engineering)
Stochastik in der Sek. II Sabrina Schultze.
Forschungsstatistik II Prof. Dr. G. Meinhardt SS 2005 Fachbereich Sozialwissenschaften, Psychologisches Institut Johannes Gutenberg Universität Mainz KLW-23.
Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
Statistische Methoden I
Statistische Methoden I
Statistische Methoden II
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Statistische Methoden II SS 2008
Konfidenzintervalle Intervallschätzung
Statistische Methoden II SS 2008 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Makarenkostraße (Kiste)
M-L-Schätzer Erwartungswert
Statistische Methoden II SS 2007 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Bitte mein Manuskript (liegt im Bibliotheksgebäude aus) nicht nach Außerhalb tragen. Die Weitergabe an Dritte (d. h. an Personen, die nicht Hörer der Vorlesung.
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur - statt Vorlesungen -
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I SS 2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Neu Übungsgruppentausch:
Statistische Methoden I SS 2005
Kolmogorov-Smirnov-Test. A. N. Kolmogorov Geboren in Tambov, Russland. Begründer der modernen Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2007/2008 Donnerstag, 31. Januar 2008 und Freitag, 1. Februar 2008 Probeklausur nächste Woche - statt Vorlesungen -
Statistische Methoden I WS 2007/2008 Probeklausur Donnerstag, 31. Januar 2008 und Freitag, 1. Februar statt Vorlesungen -
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Hier noch ein Beispiel zur bedingten Wahrscheinlichkeit Drei Personen A, B und C befinden sich im Gefängnis. Einer von den dreien ist zum Tode verurteilt,
FILTER Input: Empirische Zeitreihe Output: Geglättete Zeitreihe.
Klausurtermin (laut Prüfungsamt) Probeklausur Freitag, 13. Juni 2003 statt Vorlesung.
Achtung Vorlesung am Montag, den 21. Juni Zeit: Uhr Ort: Kiste.
II. Wahrscheinlichkeitstheorie
Statistische Methoden II SS 2003 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße Übungen.
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Die Vorlesung Statistische Methoden I fällt morgen ( ) aus! Zeit: 14:15 Ort: Hörsaal Loefflerstraße Diese Vorlesung wird am nächsten Donnerstag.
Die Vorlesung am 14. Mai (Tag nach Himmelfahrt) wird verlegt. Der Nachholtermin wird noch bekannt gegeben.
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Urnenmodelle. Wahrscheinlichkeitsräume A. N. Kolmogorov Kolmogorov wurde (mehr zufällig, seine Mutter war auf der Durchreise) in Tambov,
Statistische Methoden II SS 2003
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt sich die folgende Tabelle:
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Urnenmodelle. Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)
Bedingte Wahrscheinlichkeiten
Statistische Methoden I WS 2009/2010 Probeklausur Montag, 25. Januar statt Vorlesung -
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Test auf Normalverteilung
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Wahrscheinlichkeitstheorie. Laplacescher Wahrscheinlicheitsraum.
Vorlesung Biometrie für Studierende der Veterinärmedizin Begriff der Zufallsgröße Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt:
Binomialverteilung: Beispiel
Histogramm/empirische Verteilung Verteilungen
Wahrscheinlichkeitsverteilung
STATISIK LV Nr.: 1375 SS März 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
STATISIK LV Nr.: 1852 WS 2005/ Dezember 2005.
Stetige Verteilungen Das Uhrenbeispiel Dichtefunktion
1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte.
K. Desch - Statistik und Datenanalyse SS05
Die Binomialverteilung
Der Wiener Prozess und seltene Ereignisse
 Präsentation transkript:

Grundbegriffe der (deskriptiven) Statistik der Wahrscheinlichkeitstheorie

Häufigkeitstabelle für das Jahr 1980 Beispiel „Haushaltsgröße“ Häufigkeitstabelle für das Jahr 1980 (laut Schlittgen) Verteilungsfunktion

Zufallsvariablen Verteilung Verteilungsfunktion Wahrscheinlichkeitsfunktion Wahrscheinlichkeitsdichte Verteilung Die Verteilung einer ZV ist ein Wahr- scheinlichkeitsmaß auf den reellen Zahlen diskret stetig

Wahrscheinlichkeitsfunktion diskret f nennt man Wahrscheinlichkeitsfunktion von X stetig f nennt man Dichtefunktion von X

Verteilungsfunktion diskret stetig diskret stetig

Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz

Gegeben seien n Zufallsvariablen Dann gilt immer: Wenn gilt dann hat man auch Gleichheit von Bienaymé

Häufigkeitstabelle für das Jahr 1980 Beispiel „Haushaltsgröße“ Häufigkeitstabelle für das Jahr 1980 (laut Schlittgen)

Erwartungswert und Varianz II Der diskrete unendliche Fall Dabei nehmen wir an, dass Erwartungswert Varianz

Erwartungswert und Varianz III Der stetige Fall f ist die Wahrscheinlichkeitsdichte. Dabei nehmen wir an, dass Erwartungswert Varianz

Gegeben seien n Zufallsvariablen Dann gilt immer: Wenn gilt dann hat man auch Gleichheit von Bienaymé

Die Binomialverteilung

Erwartungswert Varianz

Die Poisson-Verteilung

Erwartungswert Varianz

Die Normalverteilung (Gauß-Verteilung) (Gaußsche Glockenkurve)

Dichte Verteilung Verteilungsfunktion

Erwartungswert Varianz

Die hypergeometrische Verteilung Notation

Erwartungswert Varianz

Die geometrische Verteilung

Erwartungswert Varianz

Die Exponential-Verteilung

Dichte Verteilung Verteilungsfunktion

Erwartungswert Varianz

Insekteneier Annahmen N : Anzahl der Eier, die ein bestimmtes Insekt legt M : Anzahl der Eier, die sich entwickeln N - M : Anzahl der Eier, die unentwickelt bleiben Annahmen Die Wahrscheinlichkeit, dass das Insekt genau n Eier legt, beträgt d. h. Jedes Ei entwickelt sich mit der gleichen Wahrscheinlichkeit p Die Eier beeinflussen sich nicht in ihrer Entwicklung

Dann gilt: 1 2 3

Bäckerei Brösel Annahmen X : Anzahl der Kunden in der Bäckerei Brösel zwischen 7.00 Uhr und 7.15 Uhr n : Anzahl der betrachteten Haushalte Annahmen Die Wahrscheinlichkeit p, dass ein Haushalt zu der Zeit bei Brösel einkauft, ist bei allen Haushalten gleich Die Haushalte entscheiden unab- hängig voneinander, ob sie bei Brösel einkaufen oder nicht

Dann gilt: d. h.

Nun wird die Anzahl n der betrachteten Haushalte vergrößert. Die „Einkaufswahrscheinlichkeit“ p hänge dabei so von n ab, dass gilt: Dann konvergiert die Verteilung von X gegen eine Poisson-Verteilung. Genauer: Man hat im Limes n gegen unendlich: