Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Synchronisation schwach gekoppelter Oszillatoren Teil 1: Theoretische Grundlagen Seminar: Physik in der Biologie Raphael Engesser.

Ähnliche Präsentationen


Präsentation zum Thema: "Synchronisation schwach gekoppelter Oszillatoren Teil 1: Theoretische Grundlagen Seminar: Physik in der Biologie Raphael Engesser."—  Präsentation transkript:

1 Synchronisation schwach gekoppelter Oszillatoren Teil 1: Theoretische Grundlagen Seminar: Physik in der Biologie Raphael Engesser

2 In der Biologie: Oszillatoren von grundlegender Bedeutung: Herzschlag Neuronen Parkinson Lotka – Volterra Glühwürmchen … Ein Oszillator ist ein dynamisches System mit einem beschränkten periodischen Attraktor

3 Biologie: immer Dissipation und Fluktuation vorhanden => Es müssen aktive System sein (zB van der Pol) Hamiltonsche Systeme: klingen ab oder laufen aus dem Ruder

4 Grenzzyklen Amplitude unempfindlich gg Störungen

5 Von Interessere: nicht die Ursache einer Oszillation sondern Wechselwirkungen (Kopplungen) zwischen einzelnen Oszillatoren Mögliche Effekte: Schwebungen Chaos Synchronisation …

6 Synchronisation Anpassung der Frequenzen von periodisch schwingenden, selbständigen Systemen (Oszillatoren) aufgrund einer schwachen Wechselwirkung frequency entrainment phase locking

7 gleichphasig gegenphasig Konstante Phasendifferenz keine Synchronistation

8 Beispiel: Millennium Bridge in London

9 Synchronisation in der Biologie Herz Neuronen Glühwürmchen Tausendfüssler Grillen …

10 Entdeckung durch Christian Huygens (1629 – 1695)

11 Arten von Kopplungen: a) Unidirektionale Kopplung Bsp: getriebener linearer Oszillator Jahreszyklus der Bäume b) Bidirektionale Kopplung Bsp: Gekoppeltes Pendel (siehe AP I)

12 Kopplung von linearen Oszillatoren: Beispiel: Gekoppelte Federpendel (lineare Näherung) Allg. Lösung: Überlagerung der Normalschwingungen Ф gleich und Ф gegen X 1 (t) = Ф gleich + Ф gegen X 2 (t) = Ф gleich - Ф gegen

13 Schwebungen Maxima versetzt keine Synchronisation

14 Kopplung von nichtlinearen Oszillatoren Beispiel: Van-der-Pol Oszillator periodisches Störsignal unidirektionale Kopplung Störsignal

15 Van-der-Pol ohne Störsignal mit μ = 3

16 (a) ε = 0, d.h. ohne Kopplung (b) ε = 0.24 Synchronisation eines periodisch getriebenen van-der-Pols

17 Das ganze bisschen mathematischer: Ein Oszillator ist ein dynamisches System Mit einem beschränktem periodischem Attraktor Periode T>0: kleinstes T für das gilt

18 Phasenbeschreibung Beschreibung eines Oszillators durch nur eine Variable definiere Transformation Θ bildet Lösungen x(t) R auf Ф(t) S 1 ab Entspricht Parametrisierung des Grenzzyklus

19 Eigenschaften von Φ(t): Koordinate entlang des Grenzzyklus steigt monoton an bei einem Umlauf um den Grenzzyklus um 2π gleichförmige Bewegung gemäß:

20 Phasenbeschreibung sinnvoll da: Störungen wirken sich nur auf Phase aus Grenzzyklus: Amplitude ist stabil System nur eindimensional

21 Betrachte zwei miteinander gekoppelte Oszillatoren: Frage: Wie sieht Phasenbeschreibung aus?

22 Wegen Störungen muss man die Phase auch auf einer Umgebung des Attraktors definieren Ungestörter Oszillator auf Umgebung des Attraktors Kettenregel

23 mit Kopplung definiere 2π-periodische Funktionen h 1,2

24 Dynamische System: lässt sich überführen in:

25 betrachte Störung auf dem Grenzzyklus:

26 (2) – (1) ergibt Phasendifferenz ΔФ = Ф 2 - Ф 1 man erhält neue Koordinate ΔФ:

27 Fixpunkte ΔФ´ = 0: Annahme: identischen Oszillatoren und WW ΔФ = 0 und ΔФ = π sind dann Fixpunkte.

28 Stabilitätsanalyse: System: ΔФ´=εH(ΔФ) Fixpunkt ΔФ* Stabil wenn H´(ΔФ * ) < 0

29 Beispiel für H(Δφ) und H 12 (Δφ ) bzw. H 21 (Δφ) Fixpunkt bei ΔФ = 0 stabil - gleichphasig ΔФ = π instabil - antiphasig

30 Adler Gleichung Zur Veranschaulichung: wähle für H(ΔФ) = sin(ΔФ) Adlergleichung:

31 Adlergleichung – Lösungen für verschiedene ε

32 Washboard - Potential Gleichung für Phasendifferenz Rechte Seite als Potential: V(ΔФ) ergibt sich mit H(ΔФ) = sin(ΔФ) als:

33 ΔФΔФ ΔФΔФ Untersuchung der Potentialgleichung: ΔФΔФ ΔФΔФ

34 Fall 1: Änderung der Frequenzen

35

36 Fall 2: Änderung der Kopplungsstärke ε

37 Arnold Tongues kleine Kopplungsstärken reichen schon

38 Weiterführendes: unterschiedliche Oszillatoren mehr als zwei: Ketten, Gitter, …. höhere Ordnung von Synchronisation Phasendifferenz muss nur beschränkt sein stochastische Effekte

39 Kommunikation von Systemen Ordnung bringen in Systeme Verringerung der Komplexitität Wenn Eigenfrequenzen ungefähr stimmen, reicht schon Bringt Stabilität in die Systeme

40 Noch Fragen????


Herunterladen ppt "Synchronisation schwach gekoppelter Oszillatoren Teil 1: Theoretische Grundlagen Seminar: Physik in der Biologie Raphael Engesser."

Ähnliche Präsentationen


Google-Anzeigen