STATISIK LV Nr.: 1375 SS 2005 8. März 2005.

Slides:



Advertisements
Ähnliche Präsentationen
Definition [1]: Sei S eine endliche Menge und sei p eine Abbildung von S in die positiven reellen Zahlen Für einen Teilmenge ES von S sei p definiert.
Advertisements

Die Laufzeit von randomisierten (zufallsgesteuerten) Algorithmen hängt von gewissen zufälligen Ereignissen ab (Beispiel Quicksort). Um die Laufzeiten dieser.
Grundlagen der Wahrscheinlichkeitsrechnung - Verteilungen -
Was ist Testtheorie?.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
Stochastik in der Sek. II Sabrina Schultze.
Gliederung Definition des Wahrscheinlichkeitsbegriffes
Forschungsstatistik II
Forschungsstatistik II Prof. Dr. G. Meinhardt SS 2005 Fachbereich Sozialwissenschaften, Psychologisches Institut Johannes Gutenberg Universität Mainz KLW-23.
Heute Prüfung der Produkt-Moment Korrelation
Grundkurs Theoretische Informatik, Folie 2.1 © 2006 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 2 Gottfried Vossen Kurt-Ulrich Witt.
Wahrscheinlichkeitstheorie
Statistische Methoden I
Konfidenzintervalle Intervallschätzung
TESTS. Worum es geht Man möchte testen, ob eine bestimmte Annahme (Hypothese) über Parameter der Realität entspricht oder nicht. Beobachtung (Stichprobe)
Die Student- oder t-Verteilung
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Datenmatrix. Datentabelle für 2 Merkmale Kontingenztafel der absoluten Häufigkeiten.
Statistische Methoden I SS 2005
Hier noch ein Beispiel zur bedingten Wahrscheinlichkeit Drei Personen A, B und C befinden sich im Gefängnis. Einer von den dreien ist zum Tode verurteilt,
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2009/2010 Einleitung: Wie schätzt man die Zahl der Fische in einem See? Zur Geschichte der Statistik.
III. Induktive Statistik
Erwartungswert und Varianz I Der endliche Fall Erwartungswert Varianz.
Datenmatrix.
Extra-SPSS-Kurse Durchführung: Birte Holtfreter Termine Di Mi Mi Ort PC-Pool Loefflerstarße.
Bedingte Wahrscheinlichkeiten Die Belegschaft eines Betriebes wird nach Rauchern und Nicht- rauchern eingeteilt. Dabei ergibt sich die folgende Tabelle:
Wahrscheinlichkeitstheorie. Statistische Methoden I WS 2002/2003 Zur Geschichte der Statistik I. Beschreibende Statistik 1. Grundlegende Begriffe 2. Eindimensionales.
Bedingte Wahrscheinlichkeiten
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Statistische Methoden I WS 2004/2005 Probeklausur Freitag, 21. Januar statt Vorlesung - In 2 Wochen In 2 Wochen!
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Grundbegriffe der (deskriptiven) Statistik
Maximum-Likelihood-Schätzer ( diskreter Fall) Likelihood-Funktion mit oder M-L-Schätzer.
Vorlesung: Biometrie für Studierende der Veterinärmedizin
Vorlesung Biometrie für Studierende der Veterinärmedizin Begriff der Zufallsgröße Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt:
Binomialverteilung: Beispiel
Wahrscheinlichkeitsrechnung
20:00.
Histogramm/empirische Verteilung Verteilungen
Ausgleichungsrechnung I
Wahrscheinlichkeitsverteilung
Wahrscheinlichkeit Zufallsexperiment:
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 1852 WS 2005/ Dezember 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
STATISIK LV Nr.: 1852 WS 2005/ Dezember 2005.
STATISIK LV Nr.: 1852 WS 2005/06 1.Dezember 2005.
STATISIK LV Nr.: 1375 SS März 2005.
Wahrscheinlichkeitsrechnung
Referat über das Thema STOCHASTIK.
Grundbegriffe der Stochastik
5.6 Zwei- und mehrdimensionale Zufallsvariablen
Stetige Verteilungen Das Uhrenbeispiel Dichtefunktion
STATISIK LV Nr.: 1852 WS 2005/06 6. Dezember 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte.
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
1. 2. Berechnen von Wahrscheinlichkeiten
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Statistik Statistik I Seminar + Blockveranstaltung Statistik I
Begriff der Zufallsgröße
Stochastik Grundlagen
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Stochastik ganz kurz Beispiel diskret Würfelwurf Beispiel stetig
K. Desch - Statistik und Datenanalyse SS05
K. Desch - Statistik und Datenanalyse SS05 Statistik und Datenanalyse 1.Wahrscheinlichkeit 2.Wahrscheinlichkeitsverteilungen 3.Monte-Carlo-Methoden 4.Statistische.
Die Binomialverteilung
 Präsentation transkript:

STATISIK LV Nr.: 1375 SS 2005 8. März 2005

Zweidimensionale Merkmale Frage: Wie lässt sich der Zusammenhang bzw. die Abhängigkeit zw. zwei Merkmalen messen? Wie stark ist der Zusammenhang bzw. die Abhängigkeit? Antwort durch Korrelationsrechnung. Lässt sich der Zusammenhang in einer bestimmten Form darstellen? Antwort durch Regressionsrechnung.

Zweidimensionale Merkmale n Untersuchungseinheiten, 2 Merkmale X und Y, Ausprägungen des Merkmals X a1,…,al und Ausprägungen des Merkmals Y b1,…,bm. 2-dimensionales Merkmal (X,Y) mit Ausprägungen (aj,bk), mit absoluten Häufigkeiten hjk und relativen Häufigkeiten fjk=1/hjk

Kontingenztafel Häufigkeitsverteilung von (X,Y) wird durch Kontingenztafel dargestellt. Absolute Randhäufigkeiten (von aj für j=1,…,l und bk für k=1,...,m): Relative Randhäufigkeiten (von aj für j=1,…,l und bk für k=1,…,m): Randhäufigkeiten ergeben die Häufigkeits-verteilung des Merkmals X bzw.Y (Randverteilung).

Kontingenztafel Absolute Häufigkeiten X Y b1 … bm Σ a1 h11 h1m h1. : al hl1 hlm hl. h.1 h.m h..=n

Kontingenztafel Relative Häufigkeiten X Y b1 … bm Σ a1 f11 f1m f1. : al fl1 flm fl. f.1 f.m f..=1

Kontingenztafel Es gilt: Relative Randhäufigkeit = 1 / n · absolute Randhäufigkeit Summe der absoluten Randhäufigkeiten = n Summe der relativen Randhäufigkeiten = 1

Korrelationskoeffizient Bravais-Pearson Korrelationskoeffizient rXY 2-dimensionales metrisch skaliertes Merkmal (X,Y) mit Ausprägungen (aj,bk) und Häufigkeiten hjk für j=1,…,l und k=1,…,m. Maß für den Zusammenhang zw. X und Y:

Korrelationskoeffizient rXY liegt immer im Intervall [-1,1] Extremfälle: -1 negativer linearer Zusammenhang rXY = 0 kein linearer Zusammenhang 1 positiver linearer Zusammenhang Interpretation: rXY < 0 d.h. große Werte von X treten mit kleinen Werten von Y auf rXY > 0 d.h. große Werte von X treten mit großen Werten von Y auf

Korrelationskoeffizient Probleme: Scheinkorrelation: X und Y hängen von einem dritten Merkmal Z ab Bsp. Gefahr eines Waldbrandes (X) und schlechter Kornertrag (Y) hängen von der Stärke der Sonneneinstrahlung (Z) ab. Nonsenskorrelation: sachlogischer Zusammenhang zw. X und Y Bsp. Korrelation zw. Anzahl der Störche und der Anzahl der Geburten in einem Land Nichtlinearer Zusammenhang: rXY misst nur einen linearer Zusammenhang

Korrelation

Korrelation

Korrelation Fechnersche Korrelationskoeffizient (2 metrisch skalierte Merkmale X und Y): rF Basiert auf Vorzeichen der transformierten Paare 1 x* und y* gleiches Vorzeichen od. beide 0 vi = ½ genau einer der Werte x* bzw. y* = 0 0 sonst

Korrelation Fechnersche Korrelationskoeffizient: Werte im Intervalle [-1,1] +1 nicht nur bei positivem linearen Zusammenhang, sonder auch wenn gilt: oder

Korrelation Rangkorrelationen für ordinal skalierte Merkmale: Verwendung von Rangzahlen: Merkmal Z, Ausprägungen z1,…,zn, der Größe nach ordnen (von der größten zur kleinsten) z(1),…,z(n) und nummerieren. Rangzahl: R(z(i)) = i für i=1,…,n Tritt ein Ausprägung mehrmals auf, dann Rang = arithm. Mittel der Ränge, die sie einnehmen. Bsp: z(1)=8, z(2)=5, z(3)=5, z(4)=2, Ränge: R(z(1))=1, R(z(2))=2,5, R(z(3))=2,5, R(z(4))=4

Korrelation Spearmansche Rangkorrelationskoeffizient rS Entspricht dem Bravais-Pearson Koeffizienten der Rangzahlen Wert +1 schon bei monoton wachsenden Beobachtungen, d.h. es gilt für alle (xi,yi), (xj,yj): mit xi < xj ist auch yi < yj

Korrelation Yulesche Assoziationskoeffizient für eine Vierfeldertafel (X,Y) nominal skaliert Häufigkeitsverteilung von (X,Y) Es gilt: -1 ≤ AXY ≤ +1; falls ein hij=0, so gilt: |AXY|=1; Vorzeichen nur in Verbindung Vierfeldertafel interpretierbar

Wahrscheinlichkeitsrechung Betrachte Ereignisse die nicht deterministisch (vorherbestimmbar) sind, Ereignisse mit Zufallscharakter.

Wahrscheinlichkeitsrechung Grundbegriffe: Zufallsexperiment: Vorgang nach einer bestimmten Vorschrift ausgeführt, beliebig oft wiederholbar, Ergebnis hängt vom Zufall ab, bei mehrmaligen Durchführung des Experiments beeinflussen die Ergebnisse einander nicht – unabhängig voneinander. (z.B. Münzwurf, Werfen eines Würfels, …)

Wahrscheinlichkeitsrechung Elementarereignisse (Realisationen) Zufallsexperiment: Reihe aller möglichen elementarer Ereignisse {e1},…,{en} Ereignisraum S: Menge der Elementarereignisse S={e1,…,en} Ereignis: Jede beliebige Teilmenge des Ereignisraumes (setzt sich aus einem od. mehreren Elementarereignissen zusammen)

Wahrscheinlichkeitsrechung Vereinigung Vereinigung von 2 Ereignissen A und B: AUB Menge aller Elementarereignisse, die zu A oder B gehören Durchschnitt Durchschnitt von 2 Ereignissen A und B: A∩B Menge aller Elementarereignisse, die zu A und B gehören Disjunkte Ereignisse 2 Ereignisse A und B schließen einander aus, A∩B=Ø (Ø unmögliches Ereignis) Komplementärereignis Menge aller Elementarereignisse des Ereignisraumes S, die nicht in Ereignis A enthalten sind

Wahrscheinlichkeitsrechung Wahrscheinlichkeit ist ein Maß zur Quantifizierung der Sicherheit bzw. Unsicherheit des Eintretens eines bestimmten Ereignisses im Rahmen eines Zufallsexperiments.

Wahrscheinlichkeitsrechung Klassischer Wahrscheinlichkeitsbegriff: Bsp. Urne mit 10 Kugeln (8 rot, 2 schwarz) Gesucht: Wahrscheinlichkeit, dass eine zufällig gezogene Kugel rot ist (Ereignis A) Ereignisraum 10 mögl. Elementarereignisse, 8 günstige Fälle W(A) = 8 / 10 = 0,8

Wahrscheinlichkeitsrechung Statistischer Wahrscheinlichkeitsbegriff: Grenzwert der relativen Häufigkeiten des Auftretens von A

Wahrscheinlichkeitsrechung Subjektiver Wahrscheinlichkeitsbegriff: Ereignissen werden „Wettchancen“ zugeordnet. Quote für A ist a:b, dann ergibt sich die Wahrscheinlichkeiten

Wahrscheinlichkeitsrechung Axiomatischer Wahrscheinlichkeitsbegriff: Definition von mathematischen Eigenschaften 1. 0 ≤ W(A) ≤ 1 2. W(S) = 1 3. A und B disjunkt: W(A U B) = W(A) + A(B)

Zufallsvariable Zufallsvariable: Variable deren Wert vom Zufall abhängt (z.B. X, Y, Z) Bsp. Zufallsexperiment: 2-maliges Werfen einer Münze. Frage: Wie oft erscheint „Zahl“? Mögliche Werte: 0, 1, 2. Variable „Anzahl Zahl“ hängt vom Zufall ab – Zufallsvariable. Realisation (Ausprägung): Wert, den eine Zufallsvariable X annimmt (z.B. x, y, z). Bsp. 2-maliges Werfen einer Münze, ZV X „Anzahl Zahl“, Ausprägungen: x1=0, x2=1, x3=2.

Zufallsvariable Zufallsvariable: Funktion, die jedem Elementarereignis eine bestimmt reelle Zahl zuordnet, z.B. X(ej)=xi Definitionsbereich einer ZV: Ereignisraum S des zugrundeliegenden Zufallsexperiments. Wertebereich einer ZV: Menge der reellen Zahlen.

Zufallsvariable Diskrete Zufallsvariable: ZV mit endlich vielen oder abzählbar unendlich vielen Ausprägungen Stetige Zufallsvariable: können (zumindest in einem bestimmten Bereich der reellen Zahlen) jeden beliebigen Zahlenwert annehmen.

Wahrscheinlichkeit Diskrete Zufallsvariable: Wahrscheinlichkeit, mit der eine diskrete ZV X eine spezielle Ausprägung xi annimmt, W(X=xi): Summe der Wahrscheinlichkeiten derjenigen Elementarereignisse ej, denen Ausprägung xi zugeordnet ist:

Wahrscheinlichkeitsfunktion Wahrscheinlichkeitsfunktion einer diskreten ZV: Funktion f(xi), die für jede Ausprägung der ZV (unterschiedliche Ausprägungen xi einer ZV X) die Wahrscheinlichkeit ihres Auftretens angibt: f(xi) = W(X=xi) Eigenschaften: f(xi) ≥ 0 i=1,2,… Σi f(xi) = 1

Verteilungsfunktion Verteilungsfunktion einer diskreten ZV: Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Es gilt: Treppenfunktion

Verteilungsfunktion Verteilungsfunktion einer stetigen ZV (kann in einem bestimmten Intervall jeden beliebigen Wert annehmen): Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Stetige Funktion

Verteilungsfunktion Eigenschaften einer stetigen Vt-Funktion: 1. 0 ≤ F(x) ≤ 1 2. F(x) ist monoton wachsend (d.h. für x1 < x2 gilt F(x1) ≤ F(x2) 3. lim x→-∞ F(x) = 0 4. lim x→∞ F(x) = 1 5. F(x) ist überall stetig

Wahrscheinlichkeitsdichte Wahrscheinlichkeitsdichte (Dichtefunktion) f(x) einer stetigen ZV: Ableitung der Verteilungsfunktion. Es gilt:

Wahrscheinlichkeitsdichte Eigenschaften: 1. f(x) ≥ 0 2. 3. 4. W(X=x) = 0 5. W(a ≤ X ≤ b) = W(a < X < b) 6. W(X ≤ a) = F(a) W(X ≤ b) = F(b) W(a ≤ X ≤ b) = F(b) – F(a)

Parameter Charakterisierung der Wahrscheinlichkeits-verteilung von Zufallsvariablen durch Parameter (Maßzahlen) Erwartungswert E(X) = Lageparameter (Entspricht dem arithm. Mittel) Varianz Var(X) = Streuungsparameter

Erwartungswert Diskrete ZV: Stetige ZV:

Varianz Diskrete ZV: Stetige ZV: Standardabweichung:

Standardisierung Lineare Transformation: Y = a + bX Spezialfall Standardisierung: a = – E(X) / σX b = 1 / σX Standardisierte Variable Z: Es gilt: E(Z) = 0 und Var(Z) = 1

Theoretische Verteilungen Diskrete Verteilungen Binomialverteilung Hypergeometrische Verteilung Poissonverteilung ... Stetige Verteilungen Gleichverteilung Exponentialverteilung Normalverteilung Chi-Quadrat Verteilung t-Verteilung (Studentverteilung) F-Verteilung

Theoretische Verteilungen Wichtigste theoretische Verteilung: Normalverteilung: stetige Verteilung symmetrische Dichtefunktion S-förmige Verteilungsfunktion Erwartungswert: E(X) = µ Varianz: Var(X) = σ² Maximum der Dichte bei x=µ Wendepunkte bei x=µσ

Normalverteilungen Normalverteilung: Dichtefunktion (für -∞<x<+∞ und σ>0) : Verteilungsfunktion:

Normalverteilung Normalverteilungen mit unterschiedlichen Parametern

Normalverteilung Verteilungsfunktion

Normalverteilung Standardnormalverteilung: Dichtefunktion: Erwartungswert µ = 0 Varianz σ² = 1 Dichtefunktion:

Normalverteilung Standardnormalverteilung