Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
Veröffentlicht von:Körbl Westermann Geändert vor über 11 Jahren
1
Potenzfunktionen Nullstellenberechnungen
2
Lineare Funktion
3
Was ist eine lineare Funktion?
Eine lineare Funktion ist eine Gerade Sie kann fallend, steigend oder parallel zur y-/ oder x-Achse sein
4
Was ist eine Nullstelle?
Die Nullstelle ist ein Schnittpunkt der Funktion mit der x-Achse, das heißt der y-Wert ist 0. Es gibt keine Nullstelle, wenn die Gerade oberhalb oder unterhalb der x-Achse ist, das heißt, die Gerade verläuft parallel zur x-Achse.
5
k=Steigung pro Einheit
Allgemeine Formel k=Steigung pro Einheit x=Variable f(x)=k*x + d f(x)= Funktionswert d=Abstand vom Schnittpunkt der Geraden mit der y-Achse bis zu (0/0) = Ordinatenabstand
6
fallend, steigend oder parallel?
Ist k > 0 spricht man von einer steigenden Geraden Ist k = 0 spricht man von einer zur x- Achse parallelen Geraden Ist k < 0 spricht man von einer fallenden Geraden
7
Beispiel: Lineare Funktion
Zeichne: f(x)=7*x+8
8
Schritt 1 - Wertetabelle in Excel anlegen
f(x) -2 -6 -1 1 8 15 2 22
9
Schritt 2 - zeichnen N(-1,14/0)
10
händische Berechnung der Nullstelle
berechne: f(x)=7*x+8
11
0=7*x+8 /-8 -8=7*x /:7 -1,142.. = x N(-1,14/0)
12
Funktion 2ten Grades
13
Und was ist eine Funktion 2ten Grades?
Eine Funktion 2ten Grades ist keine lineare Funktion!! Man nennt sie quadratische Funktion oder Parabel.
14
Allgemeine Formel f(x)=ax²+bx+c
15
Beispiel: Funktion 2ten Grades
zeichne: f(x)=x²-5x+1
16
1. Schritt – Wertetabelle in Excel anlegen
f(x) -2 15 -1 7 1 -3 2 -5 3 4 5 6
17
2. Schritt - Zeichnen N(4,79/0) N(0,21/0)
18
händische Berechnung der Nullstelle
berechne: f(x)=x²-5x+1
19
Schritt 1 Nullstelle: 0= 1 x² - 5 x + 1 0= a x² + b x + c a=1 b= -5 c=1
20
Schritt 2- Einfügen der Variablen in die Formel
Allgemeine Formel zur Nullstellenberechnung: 1x2 =(-b±√b^2-4ac)/2a Füge die Variablen in die Formel ein: 1x2=(+5 ± √5^2-4*1*1)/2*1
21
Nicht vergessen 1. Klammer ausrechnen
Schritt 3- Ausrechnen Nicht vergessen 1. Klammer ausrechnen 1x2=(+5 ± √5^2-4*1*1)/2*1 x1=(5 +4,58)/2= 4,79 x2=(5 -4,58)/2=0,21 Ergebnis N1(4,79/0) N2(0,21/0)
22
Funktion 3ten Grades
23
Und was ist eine Funktion 3ten Grades?
Diese nennt man kubische Funktion. Sie haben mindestens 1 und höchstens 3 Nullstellen.
24
Allgemeine Formel f(x)= ax³ + bx² +cx + d
25
Beispiel: Funktion 3ten Grades
zeichne: f(x)=-2x³+5x²-3x
26
Schritt 1 – Wertetabelle in Excel anlegen
y f(x) -3 108 -2 42 -1 10 1 2 3 -18 4 -60
27
Schritt 2 - Zeichne
28
händische Berechnung der Nullstelle
berechne: f(x)=-2x³+5x²-3x
29
Schritt 1 Nullstelle: 0=-2x³+5x²-3x Herausheben: 0= x . (-2x²+5x-3) -2x²+5x-3=0 x1=0
30
Schritt 2 Nullstelle: 0= -2 x² + 5 x² - 3 x 0= a x² + b x + c x a=-2 b= +5 c=-3
31
Schritt 3 Allgemeine Formel zur Nullstellenberechnung: 1x2 =(-b±√b^2-4ac)/2a Füge die Variablen in die Formel ein: 1x2=(-5 ± √5^2-4*(-2)*(-3))/(2*(-2))
32
Nicht vergessen 1. Klammer ausrechnen
1x2=(-5 ± √5^2-4*(-2)*(-3))/(2*(-2)) x2=(-5 +1)/(-4)= 1 x3=(-5 -1)/(-4)=1,5 Ergebnis N1(0/0) N2(1/0) N3(1,5/0)
33
Beispiel: Funktion 3ten Grades
zeichne: f(x)=-2x³+5x²-3x+4
34
Schritt 1 – Wertetabelle in Excel anlegen
y f(x) -3 122 -2 46 -1 14 4 1 2 3 -14 -56
35
Schritt 2 - Zeichnen
36
händische Berechnung der Nullstelle
berechne: f(x)=-2x³+5x²-3x+4
37
Schritt 1 0=-2x³+5x²-3x+4 Man kann nicht herausheben. Es gibt keine Formel für eine Gleichung 3ten Grades, daher kann die obige Gleichung nur mit Hilfe eines Näherungsverfahrens (Newton) oder mit Hilfe des Solver in Excel gelöst werden.
38
Alles klar !!
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.