Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Statistiktutorat Thema 1: Grundbegriffe der Statistik

Ähnliche Präsentationen


Präsentation zum Thema: "Statistiktutorat Thema 1: Grundbegriffe der Statistik"—  Präsentation transkript:

1 Statistiktutorat Thema 1: Grundbegriffe der Statistik

2 Zitate Statistik ist für mich das Informationsmittel der Mündigen. Wer mit ihr umgehen kann, kann weniger leicht manipuliert werden. Der Satz: Mit Statistik kann man alles beweisen gilt nur für die Bequemen, die keine Lust haben, genau hinzusehen (Elisabeth Noelle-Neumann, Gründerin von Allensbach ). Wenn man mündige Bürger haben will, muss man ihnen drei Dinge beibringen: Lesen, Schreiben und statistisches Denken (Gerd Gigerenzer, Direktor des MPI für Bildungsforschung). Statistiken sind wie Bikinis, sie enthüllen eine ganze Menge, verbergen aber das Wichtigste (anonym).

3 Struktur meines Tutorats Wiederholung (ca. 15 min) Theorieteil (30 – 45 min) Rechnen in Gruppen (30 – 45 min)

4 Gliederung Thema I I.Der rote Faden für dieses Semester II.Wirklichkeit mathematisch abbilden: Messung & Operationalisierung III.Skalenniveaus und ihre Eigenschaften

5 I.Der Rote Faden für dieses Semester

6 Der große Rahmen

7 Was ist deskriptive Statistik? Der Bereich der Statistik, der eine Menge von erhobenen Daten summarisch (und damit überschaubar) darstellt bzw. beschreibt. Die Veranschaulichung kann grafisch oder rein numerisch erfolgen. Wortwörtlich: Beschreibende Statistik.

8 Daten als Balkendiagramm Eine rein numerische Darstellung dieser Daten wäre z.B: Der mittlere (durchschnittliche) Nitratgehalt in Säuglingsnahrung liegt in unserer Stichprobe bei 52 mg/kg.

9 Was ist Inferenzstatistik Inferenzstatistik bedeutet, aus Stichproben einer Population Rückschlüsse auf die Gesamtpopulation zu ziehen. Wortwörtlich: Schließende Statistik.

10 Die Verbindung Die Verfahren der Inferenzstatistik verwenden als Datengrundlage ihrer Berechnungen die mittels deskriptiver Statistik erhobenen Kennwerte. Die mathematische Grundlage der Inferenzstatistik bildet die Wahrscheinlichkeitsrechnung.

11 II.Wirklichkeit mathematisch abbilden: Messung & Operationalisierung

12 Datenerhebung oBevor wir Daten deskriptiv beschreiben (und später eventuell inferentiell auswerten) können, müssen die Daten erhoben werden. oDazu werden zunächst die Merkmale der untersuchten Personen/Objekte klassifiziert.

13 Klassifikationskriterium I Qualitativ vs. Quantitativ oQualitative Merkmale beschreiben die Zugehörigkeit einer Person/eines Objektes zu einer von mehreren Kategorien. Beispiele: Haarfarbe, Nationalität oQuantitative Merkmale beschreiben die Ausprägung einer Person/eines Objekts bezüglich eines Merkmals. Beispiele: Extraversion, Körpergröße

14 Manifest vs. Latent oManifeste Merkmale sind direkt beobacht- und damit messbar oLatente Merkmale (synonym: Konstrukte) sind nur indirekt zu erfassen. Dies geschieht durch Rückschluss aus manifesten Merkmalen. oWie sind unserer Merkmale Haarfarbe, Herkunftsland, Körpergröße und Extraversion einzuordnen? Manifest: Haarfarbe, Nationalität, Körpergröße Latent: Extraversion Klassifikationskriterium II

15 Überblick: Klassifikation von Merkmalen

16 Vom Merkmal zur Variable oNach der Klassifikation erfolgt die Überführung der Merkmale in Zahlen. Dies geschieht nach den Regeln einer Operationalisierung (synonym: Messvorschrift). oMessung: Zuordnung von Zahlen zu Objekten gemäß den Regeln einer Operationalisierung.

17 Beispiele für Operationalisierungen oDie Variable Haar soll die Haarfarbe erfassen. Es wird der Wert 1 für blond, der Wert 2 für schwarz und der Wert 3 für rot verwendet. oDie Variable Größe soll die Körpergröße der untersuchten Personen in cm erfassen. oDie Variable extr soll die mittels Fragebogen selbst eingeschätzte Extraversion auf einer Skala von 0 (maximal introvertiert) bis +10 (maximal extravertiert) erfassen.

18 Abstrakte Definition Messung Zuordnung von Zahlen zu Objekten oder Ereignissen, sofern dieser Zuordnung eine homomorphe Abbildung eines empirischen Relativs in ein numerisches Relativ ist. oEmpirisches Relativ: Menge von Objekten, die sich anhand eines Merkmals vergleichen lassen. oNumerisches Relativ: Menge von Zahlen die sich anhand von Zahlen in Relation bringen lassen. oHomomorphe Abbildung: eindeutige Abbildung.

19 isomorph vs. homomorph blond brünett dunkel Homomorphe Zuordnung: Jedem Element der Menge A kann ein Element der Menge B zugeordnet werden. Isomorphe Zuordnung : Zusätzlich kann jedem Element der Menge B auch genau ein Element der Menge A zugeordnet werden. Merkmal (Menge A) Variable (Menge B) dunkel 2 ? ?

20 Klassifikation von Variablen oDiskret: Die Anzahl der möglichen Werte (auch wenn sehr hoch) ist endlich und damit genau abzählbar. oKontinuierlich: Die Variable kann auf einem beliebig genauem Kontinuum beschrieben werden, d.h. die Anzahl der möglichen Werte geht gegen unendlich. o qualitativ vs. quantitativ.

21 Diskret (d) oder kontinuierlich (k)? oBeruf (Bezeichnung) (d) oReaktionszeit (in ms) (k) oParteizugehörigkeit (d) oTierart (d) oGewicht (in kg) (k) Diskrete vs. kontinuierliche Variablen

22 qualitativquantitativ diskretkontinuierlich latent/manifest Operationalisierung Schaubild Merkmal & Variable MerkmalVariable

23 III.Skalenniveaus und ihre Eigenschaften

24 oIn der Statistik ordnet man Variablen ein so genanntes Skalenniveau zu. oDiese Skalenniveau hat folgende zentrale Konsequenzen: 1.Es bestimmt, welche mathematischen Operationen (Tests) mit einer Variable durchgeführt werden können und damit die Präzision der möglichen Schlussfolgerungen. 2.Es bestimmt, welche Transformationen von Variablen möglich sind, ohne Information zu verlieren (d.h. das Skalenniveau zu senken) Variable und Skalenniveau

25 Transformationen Unter einer Transformation wird eine Umwandlung von Variablenwerten durch eine mathematische Funktion verstanden, welche die ursprünglichen Werte in jeweils neue Werte überführt. Beispiel: f (x) = 3 · x Zweck: Daten aus verschiedenen Studien zusammen führen oder bestimmte Verteilungsformen herstellen, die Voraussetzung für viele Tests sind.

26 Die 4 Skalenniveaus Man unterscheidet 4 Skalenniveaus: 1.Die Nominalskala 2.Die Ordinalskala 3.Die Intervallskala (metrisch) 4.Die Verhältnisskala (metrisch) oViele für die Psychologie relevante Testverfahren setzten mindestens Intervallskalenniveau voraus. oDaher immer versucht werden, Daten auf einem möglichst hohem Skalenniveau zu erfassen.

27 Wovon hängt das Skaleniveau ab? I.Vom untersuchten Merkmal selbst: Geschlecht kann z.B. nur auf Nominalskalenniveau erhoben werden – entweder Mann oder Frau. II.Von der Operationalisierung des Merkmals: Körpergewicht lässt sich verhältnisskaliert erheben, doch die Operationalisierung >70 kg = schwer, <70 kg = leicht wäre lediglich ordinalskaliert

28 Die Nominalskala oBei der Nominalskala geben die Variablenwerte Auskunft über die Zugehörigkeit zu einer Kategorie: Es werden Namen (Zahlenwerte) für jede Merkmalsausprägung vergeben. oBeispiel: Geschlecht (m / w); in SPSS wird dann eingegeben m=1, w=2 oAussagekraft: Gleichheit/Verschiedenheit der Merkmalsausprägungen oMögliche Transformationen: Es sind alle eineindeutigen Transformationen erlaubt: weiblich = 1; männlich = 2 oder weiblich = 2; männlich = 1 oder weiblich = 100; männlich = 200

29 Die Ordinalskala Bei der Ordinalskala (Sonderfall: Rangskala) geben die Variablenwerte Aufschluss über die Rangfolge der Merkmalsträger bezüglich des gemessenen Merkmals. Beispiel: Schulabschluss –0 = kein SA –1 = Hauptschule –2 = Realschule –3 = Gymnasium Zusätzliche Annahme der Operationalisierung: Die zugeordneten Zahlen repräsentieren eine Rangreihe der Merkmalsausprägung.

30 Die Ordinalskala Aussagekraft von Variablenwerten: -Information über Gleichheit / Verschiedenheit der Merkmalsausprägung, -Größer / Kleiner Relationen Mögliche Transformationen: Erlaubt sind nur noch alle monotonen Transformationen. Beispiele: y = x + 3 y = 2x y = log(x)

31 Monotone Funktion A

32 Monotone Funktion B

33 Nicht-monotone Funktion A

34 Nicht-monotone Funktion B

35 Die Intervallskala Bei der Intervallskala geben die Variablenwerte Aufschluss über die Abstände zwischen Merkmalsausprägungen. Beispiel: Ergebnisse eines Intelligenztests: Peter = 115; Anne = 130 Differenz 15 Punkte Zusätzliche Annahme der Operationalisierung: Gleich große Intervalle zwischen Zahlenwerten der Variable repräsentieren gleich große Abstände in der Merkmalsausprägung.

36 Die Intervallskala Aussagekraft von Variablenwerten: -Information über Gleichheit / Verschiedenheit der Merkmalsausprägung, -Größer / Kleiner Relationen -Größe von Unterschieden Mögliche Transformationen: Erlaubt sind nur noch lineare Transformationen (y = ax+b). Beispiele: y = x -100 y = 0.1 x

37 Die Verhältnisskala Die Verhältnisskala erlaubt Aussagen über das Verhältnis von Merkmalsausprägungen. Sie kann vor allem bei der Messung physikalischer Größen (Länge, Gewicht, Zeit) angenommen werden. Beispiel: Reaktionszeit (ms). Zusätzliche Annahme für die Operationalisierung: Die Skala hat einen definierten Null-Punkt.

38 Die Verhältnisskala Aussagekraft von Variablenwerten: -Information über Gleichheit / Verschiedenheit der Merkmalsausprägung -Größer / Kleiner Relationen -Größe von Unterschieden -Verhältnis von Merkmalsausprägungen (z.B. doppelte Reaktionszeit) Mögliche Transformationen: Erlaubt sind nur noch alle multiplikativen Transformationen (y = ax). Beispiele: y = x (Umrechnung von Millisekunden in Sekunden) y = 24 x (Umrechnung von Jahren in Monate)

39 Überblick Skalenniveaus

40 Skalenniveaus und Informationsgewinn

41 Welches Skalenniveau? 3 Arten der Erfassung von psychischen Störungen oTypologie: 0 = keine Störung 1 = Störung nominal oAbgestufte Typologie: 0 = nicht beeinträchtigt 1 = wenig beeinträchtigt 2 = eher beeinträchtigt 3 = klinisch relevante Beeinträchtigung ordinal oKontinuierliche (dimensionale) Erfassung: Testergebnis in einem klinischen Interview (z.B ) metrisch

42 Grauzone bei Skalenniveaus oOft ist nicht eindeutig, ob eine Variable als ordinal- oder als intervallskalliert gelten kann. oDie Grauzone beginnt dort, wo die Variable mehr Information als Größer/Kleiner Relation beinhaltet und endet dort, wo gesichert ist, dass Gleichheit der Intervalle gegeben ist. oOb Gleichheit der Intervalle gegeben ist, muss in jedem Einzelfall theoretisch und/oder statistisch geprüft werden.

43 Vielen Dank für eure Aufmerksamkeit!


Herunterladen ppt "Statistiktutorat Thema 1: Grundbegriffe der Statistik"

Ähnliche Präsentationen


Google-Anzeigen