Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

SFZ 14/15 W.Seyboldt 1 Dreieckssätze Pythagoras und Co.

Ähnliche Präsentationen


Präsentation zum Thema: "SFZ 14/15 W.Seyboldt 1 Dreieckssätze Pythagoras und Co."—  Präsentation transkript:

1 SFZ 14/15 W.Seyboldt 1 Dreieckssätze Pythagoras und Co

2 Pythagoras 300 v.Chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft von den 13 Büchern des Euklid. Alexandria, 332 von Alexander gegründet, war 500 Jahre lang Zentrum der Wissenschaft und Kultur Die Elemente sind sehr trocken, undidaktisch im heutigen Sinn, waren über Jahrhunderte das Lehrbuch. Internet auf Englisch Internet Band 1: Proposition 47: Satz des Pythagoras Im rechtwinkligen Dreieck ist das Quadrat über der dem rechten Winkel gegenüber liegenden Seite gleich den Quadraten über den Seiten zusammen, die ihn einschließen. hier findet man 111 Beweise. Klassischer Beweis (proof 1): SFZ 14/15 W.Seyboldt 2

3 Chinesischer Beweis (200 v.Chr) / Variante siehe, ( Proof 9)siehe Mit binomischer Formel und vier Dreiecken Variante siehe, (Proof 10)siehe SFZ 14/15W.Seyboldt 3

4 Höhensatz / Kathetensatz SFZ 14/15W.Seyboldt 4

5 Reziproker Pythagoras SFZ 14/15W.Seyboldt 5

6 Satz von Höhn 2000 SFZ 14/15W.Seyboldt 6

7 Satz von Eddy 1991 Die innere Winkelhalbierende des rechten Winkels in einem rechtwinkligen Dreieck teilt das Quadrat über der Hypothenuse in seiner Mitte. Beweis: Ergänze die Skizze (a) durch drei Dreiecke zu (b) Die Diagonale geht durch die Mitte des äußeren und inneren Vierecks. SFZ 14/15W.Seyboldt 7

8 Ein „simpler Beweis“ des Pythagoras In einem rechtwinkligen Dreieck mit der Höhe h sind die beiden Teildreiecke kongruent zum ursprünglichen. Also gilt: Oder Und damit SFZ 14/15W.Seyboldt 8

9 Ein „trickreicher“ Beweis des Pythagoras Polya: Mathematik und plausibles Schließen, S. 38ff Werden drei ähnliche Polygone auf den drei Seiten eines rechtwinkligen Dreiecks errichtet, so ist das auf der Hypotenuse errichtete an Fläche gleich der Summe der beiden anderen. Es genügt, dies für Dreiecke, für rechtwinklige Dreiecke zu zeigen. SFZ 14/15W.Seyboldt 9

10 Inkreis eines rechtwinkligen Dreiecks In jedem Dreieck gilt: Alle drei Winkelhalbierenden schneiden sich in einem Punkt. Dieser Punkt hat von allen Seiten denselben Abstand. (Jeder Punkt der Winkelhalbierenden hat von den beiden Schenkeln denselben Abstand) Der Kreis mit dem Radius r = (Abstand von den Seiten) berührt alle drei Seiten. Bez: Im rechtwinkligen Dreieck mit der Hypotenuse c gilt: und oder Dreiecksfläche und Aufgabe: Zeige dass die letzten beiden Gleichungen äquivalent sind. SFZ 14/15W.Seyboldt 10

11 Beweis der beiden Formel der letzten Folie Der Abbildung rechts entnehmen wir oder aufgelöst nach r: Die zweite Formel entnehmen wir den folgenden beiden Abbildungen: Die obere Abb. (c) besteht aus zwei Dreiecken (b). Die untere Abb. setzt sich aus den Teildreiecken der Abb. darüber zusammen. Die beiden Flächen sind also gleich, d.h. (also ) Lösen wir nach r auf, erhalten wir: SFZ 14/15W.Seyboldt 11

12 Fläche Dreieck und Inkreis Die Fläche A eines rechtwinkligen Dreiecks ist gleich dem Produkt aus den Längen der Hypotenusenabschnitte, die durch den Berührungspunkt des Inkreises definiert sind. Beweis: Siehe die beiden folgenden Skizzen Aufgabe Nutze x = a-r und y = b-r, um die Aufgabe mit den Formeln der Folie 8 zu beweisen. SFZ 14/15W.Seyboldt 12


Herunterladen ppt "SFZ 14/15 W.Seyboldt 1 Dreieckssätze Pythagoras und Co."

Ähnliche Präsentationen


Google-Anzeigen