Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Aufgabenzettel V Statistik I © by Ewald Krawitz & Oliver Schattmann.

Ähnliche Präsentationen


Präsentation zum Thema: "Aufgabenzettel V Statistik I © by Ewald Krawitz & Oliver Schattmann."—  Präsentation transkript:

1 Aufgabenzettel V Statistik I © by Ewald Krawitz & Oliver Schattmann

2 Aufgabe 2a) //Einlesen der Ereignisse > x<- c(58,49,58,57,50,60,64,65,65,59,65,65,45, 54,52,59,65,57,63,54,65,60,61,47,60,52,63, 61,54,63,62,56,56,65,56,64,65,55,59,65,64, 49,65,50,65,61,64,61,59,63,58,57,65,60,55, 64,65,59,62,65,64,54,56,58,40,85,53,61,56, 65,58,58,55,52,65,60,65,63,64,63,60,61,61, 65,56,62,65,54,64,63,57,64,62,58,60,52,53, 62,56,65)

3 Aufgabe 2a) //Ereignisse in tabellierter Form darstellen > table(x)

4 Aufgabe 2a) Berechnung der 5 Zahlenzusammenfassung per Hand: Median = (x 50 +x 51 )/2=(60+60)/2=60 1.Angel = (x 25 +x 26 )/2=(56+56)/2=56 2. Angel = (x 75 +x 76 )/2=(64+64)/2=64 Minimum = x 1 =40 Maximum =x 100 =85

5 AUFGABE 2A) 5 Zahlenzusammenfassung //Berechnung der wichtigen Werte > summary(x) Min. 1st Qu. Median 3rd Qu. Max

6 AUFGABE 2A) //Ausgabe des Boxplots > boxplot(x,ylab="Rockwell",xlab="Stahlhärte")

7 Aufgabe 2a) Erste 25% sind relativ weit verstreut Der Mittelwert ist nahe dem Median nämlich zu 60. Dies zeigt, dass der Ausreißer mit 85, nicht zu stark ins Gewicht fällt. Die letzten Werte liegen dicht beieinander hinter der letzten Angel

8 AUFGABE 2A) //Ausgabe des Stabdiagramm > plot(table(x))

9 Aufgabe 2a) Zwischen 52 und 65 existieren die meisten Beobachtungen 65 ist Modalwert, da es doppelt so oft vor kommt, wie alle anderen Werte

10 AUFGABE 2B) Entwerfen der Häufigkeitstabelle: (c j-1 )

11 AUFGABE 2B) //Ausgabe des Histogramms > hist(x,breaks=c(30,40,50,60,70,80,90,100))

12 Aufgabe 2b) Am Histogramm kann man gut erkennen, dass in der Mitte eine Stauung des Datensatzes ist, da dort ca. 90% aller Ereignisse auftreten

13 Boxplotdiagramm Gut geeignetSchlecht geeignet Aufbau des Datensatzes Um größere Stichproben zu bewältigen Eignet sich, verschiedene Datensätze miteinander zu vergleichen Über absolute und relative Häufigkeiten einzelner Ausprägungen kann keine Aussage getroffen werden

14 Histogramm Gut geeignetSchlecht geeignet Aussage über die Dominanz einzelner Klassen möglich Struktur der Daten gut erkennbar Häufigkeiten einzelner Ausprägungen sind nicht zu erkennen

15 Stabdiagramm Gut geeignetSchlecht geeignet Gibt genauen Aufschluss über absolute Häufigkeiten Gibt den Modalwert zu erkennen Die Häufigkeitsverhältnisse verschiedener Ausprägungen lassen sich bei einer größeren Menge von Ausprägungen unter Umständen nicht veranschaulichen

16 AUFGABE 2B) Welche Fragen lassen sich mittels statistischer Maßzahlen beantworten? Man sieht, in welchem Bereich alle Daten liegen Die statistischen Maßzahlen enthalten alle Informationen, die auch Box-Plot Diagramm enthält, allerdings in grafischer Form Mit der Varianz als Zahl kann man kaum arbeiten Die Standardabweichung kann eine Aussage über die Streuung der Daten treffen. Je kleiner sie ist, desto dichter liegen die Werte am arithmetischen Mittel Über Ausreißer lässt sich mithilfe der statistischen Maßzahlen keine Aussage treffen Minimum, Maximum des Datensatzes erkennbar


Herunterladen ppt "Aufgabenzettel V Statistik I © by Ewald Krawitz & Oliver Schattmann."

Ähnliche Präsentationen


Google-Anzeigen