Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Die Logistische Gleichung & Die Kepler Gleichungen Vortrag von Funk, Rodler & Zechner.

Ähnliche Präsentationen


Präsentation zum Thema: "Die Logistische Gleichung & Die Kepler Gleichungen Vortrag von Funk, Rodler & Zechner."—  Präsentation transkript:

1 Die Logistische Gleichung & Die Kepler Gleichungen Vortrag von Funk, Rodler & Zechner

2 Die Logistische Gleichung x n + 1 = r.x n (1-x n ) = f (r, x n ) für n = 0, 1, 2,... mit x [0,1] und 1 < r 4 Beispiel für deterministische Bewegung in einem dynamischen System Scheinbar einfaches System mit überaus reicher Struktur Langzeitverhalten mit abwechselnd geordnete und chaotische Struktur Ableitung von überraschenden empirischen Gesetzmäßigkeiten

3 Wozu benötigt man die logistische Gleichung? Bestimmung des Langzeitverhaltens einer Bewegung Auftreten von geordneten und ungeordneten Bewegungstypen Analyse von ungeordneten Bewegungen Untersuchung der Stabilität von Gleichgewichtslagen Abhängigkeit des Systems von äußeren Kontrollparametern Studium von Bifurcationen

4 Das System als Funktion des Kontrollparameters r Lage und Natur der Gleichgewichtslagen wird durch den Kontrollparameter r bestimmt Auftreten folgender Phänomene: –Verzweigung von Gleichgewichtslagen –Periodenverdopplung –Stückweises chaotisches Verhalten –Attraktoren Illustration der Iteration der logistischen Gleichung anhand von numerischen Ergebnissen:

5 Iterationen der Logistischen Gleichung 1 < r < 3: stabile Gleichgewichtslage r = r 0 = 3: marginal stabil, r 0 ist ein Verzeigungspunkt r > r > r 0 : instabil, Periodenverdopplung r = r = 3,56994… : Häufungspunkt r > r : Bereiche von Chaos, die von Bändern mit periodischen Attraktoren unterbrochen werden –Extreme Empfindlichkeit gegenüber den Anfangsbedingungen –Vorhergehende Iterationen sind nicht rekonstruierbar

6 Phänomen der Periodenverdopplung charakteristisch für den Bereich: 1 < r r abwechselnd periodische Attraktoren und Bereiche von echtem Chaos Bifurcationen - kritische Werte von r Periodenverdopplungskaskade: Lösungen, die sich immer weiter aufspalten ( ) Feigenbaum-Konstante: Das Verhältnis zweier aufeinanderfolgender Abstände bleibt immer gleich!

7 Merkmale des Feigenbaum - Diagramms Selbstähnlichkeit: Bei Vergößerung eines Stabilitätsfensters erkennt man wieder die gleiche Struktur Feigenbaumkonstante: = … Das Verhältnis zweier aufeinanderfolgender Abstände bleibt immer konstant.

8 Demonstration der Logistischen Gleichung Anhand von zwei selbst geschriebenen Programmen in QBasic: –Zeitreihen: Zum Testen des Verlaufs der logistischen Gleichung –Feigenbaum-Diagramm: Berechnung und Zeichnung eines Endzustand- Diagramms. Demonstration der graphischen Iteration mit Hilfe des Programms Feigenbaum

9 Die Kepler Gleichungen


Herunterladen ppt "Die Logistische Gleichung & Die Kepler Gleichungen Vortrag von Funk, Rodler & Zechner."

Ähnliche Präsentationen


Google-Anzeigen