Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Die Wärmeleitgleichung lautet. Für den Versuch sollen die folgenden Bedingungen.

Ähnliche Präsentationen


Präsentation zum Thema: "Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Die Wärmeleitgleichung lautet. Für den Versuch sollen die folgenden Bedingungen."—  Präsentation transkript:

1 Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Die Wärmeleitgleichung lautet. Für den Versuch sollen die folgenden Bedingungen gelten. Die Diskretisierung erfolgt nach dem Differenzenverfahren mit Lösungspunkten auf dem Maschenrand Konstanten Maschenweiten Ansatz für Lösung Ansatz für Differentiale Konsistenzbedingung Lösung explizit Lösung implizit Diskretisierung der Wärmeleitgleichung

2 Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Lösung der Wärmeleitgleichung nach dem expliziten Verfahren 1/2 Beim expliziten Verfahren erfolgt der Ansatz für die Diskretisierung am Zeitpunkt. Es gilt also. Die Wärmegleichung in diskreter Form lautet: Nun wird die Gleichung so umgestellt, dass die Temperaturen eines Zeitpunk- tes auf einer Seite stehen:, in Matrixschreibwei- se:. E ist die Einheitsmatrix und B eine Tridiagonalmatrix. Berücksichtigt man die Vorgabe Konstanter Randtemperaturen so gilt für B: Die Anfangsbedingungen, d.h. im vorgegebenen Beispiel die Anfangstemper- aturen des Stabs müssen in den Startvektor eingehen.(Für sich mit der Zeit ändernde Randbedingungen müsste bei dieser Diskretisierung der Lösungs- vektor vor jedem Zeitschritt in den Werten, die den Rand betreffen - hier erste und letzte Komponente - modifiziert werden.)

3 Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung 2/2 Um das Gleichungssystem, zu lösen, kann die Einheits- matrix wegfallen und der jeweils neu berechnete Temperatur- vektor wird rekursiv als Ausgangsvektor für den folgenden Zeitschritt benützt. Das explizite Verfahren konvergiert aber nur für, bei größeren Werten zeigt sich, daß die Lösung instabil ist. Bei diesem Versuch wird das Temperaturprofil eines idealisierten Stabs (ein- dimensional) bei fortlaufender Zeit visualisiert. Die Anfangstemperatur beträgt 20 Grad. Der Stabanfang wird konstant auf 100 Grad gehalten, das Stabende konstant auf 20 Grad. Für die Temperaturleitfähigkeit wird 1 angesetzt. Die Matrix B wird ebenfalls dargestellt und der erste berechnete Temperatur- vektor in schriftlicher Form gezeigt. Aufgabe: Bestimmen Sie die Zahl der Zeitschritte bis zur stationären Lösung für einen Stab der Länge 5 und 10. Untersuchung der Stabilität und der Genauigkeit. Der Versuch wird durch Klick gestartet 2/2

4 Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Lösung der Wärmeleitgleichung nach dem impliziten Verfahren Beim impliziten Verfahren erfolgt der Ansatz für die Diskretisierung am Zeitpunkt. Es gilt also für die Wegdiskretisierung. Die Wärmegleichung in diskreter Form lautet: Nun wird die Gleichung so umgestellt, dass die Temperaturen eines Zeitpunk- tes auf einer Seite stehen:, in Matrixschreibwei- se:. E ist die Einheitsmatrix und B eine Tridiagonalmatrix. Berücksichtigt man die Vorgabe Konstanter Randtemperaturen so gilt für B: Die Anfangsbedingungen, d.h. im vorgegebenen Beispiel die Anfangstemper- aturen des Stabs müssen in den Startvektor eingehen.(Für sich mit der Zeit ändernde Randbedingungen müsste bei dieser Diskretisierung der Lösungs- vektor vor jedem Zeitschritt in den Werten, die den Rand betreffen - hier erste und letzte Komponente - modifiziert werden.) 1/2

5 Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung 2/2 Der Versuch wird durch Klick gestartet Um das Gleichungssystem, zu lösen, kann die Einheits- matrix wegfallen und der jeweils neu berechnete Temperatur- vektor wird rekursiv als Ausgangsvektor für den folgenden Zeitschritt benützt. Das implizite Verfahren konvergiert für alle Werte von. Der Rechenaufwand beim impliziten Verfahren ist wegen der damit verbundenen Lösung größer als beim expliziten, dafür bleibt aber das Verfahren für alle Werte stabil. Bei diesem Versuch wird das Temperaturprofil eines idealisierten Stabs (ein- dimensional) bei fortlaufender Zeit visualisiert. Die Anfangstemperatur beträgt 20 Grad. Der Stabanfang wird konstant auf 100 Grad gehalten, das Stabende konstant auf 20 Grad. Für die Temperaturleitfähigkeit wird 1 angesetzt. Die Matrix B wird ebenfalls dargestellt und der erste berechnete Temperatur- vektor in schriftlicher Form gezeigt. Aufgabe: Bestimmen Sie die Zahl der Zeitschritte bis zur stationären Lösung für einen Stab der Länge 5 und 10. Untersuchung der Stabilität und der Genauigkeit.


Herunterladen ppt "Numerik partieller Differentialgleichungen, SS 03 Teil 3 : V10 Wärmeleitung Die Wärmeleitgleichung lautet. Für den Versuch sollen die folgenden Bedingungen."

Ähnliche Präsentationen


Google-Anzeigen