Präsentation herunterladen
Veröffentlicht von:Carloman Zahler Geändert vor über 11 Jahren
1
Vorlesung 11: Roter Faden: Horizontproblem 2. Flachheitsproblem
3. Inflation
2
Horizontproblem Problem: A und B haben gleiche Temperatur.
Photonen aus A 1010 yr unterwegs. Photonen aus B 1010 yr unterwegs, aber in entgegengesetzte Ri. Wie können A und B die gleiche Temp. haben, wenn das Univ. nur 1010 yr alt ist? Problem noch viel schlimmer, wenn man Anzahl der nicht kausal zusammen- hängenden Gebiete zum Zeitpunkt der Entkoppelung betrachtet!
3
Horizontproblem Wenn wir 3K-Strahlung über 4 Raumwinkel betrachten, sehen wir kausal nicht zusammenhangende Gebiete, d.h. Gebiete die nie Energie austauschen konnten. Warum exakt die gleiche Temperatur? Dies nennt man Horizontproblem, weil die Horizonte der CMB viel kleiner sind als der 4 Raumwinkel, die wir beobachten. Lösung: durch Inflation wurde der Horizont damals drastisch vergrößert.
4
Wie stark muss Inflation sein?
Wie groß ist Universum zum Zeitpunkt tGUT? Zum Zeitpunkt tGUT s war das Univ. ca. 3 cm groß! (SGUT/S0 = T0/TGUT 2.7/1028 mit S0 3ct0 1028 cm) Energieaustausch max. mit Lichtgeschwindigkeit, d.h. bis zu einem Abstand von ct = cm! Daher muss Inflation einen Schub im Skalenfaktor von mindestens 1027 erzeugt haben, oder S = e t/ > 1027 oder t > 63 10-35s für = s, d.h. Inflation nur zwischen und s und H=1/ > 1037 s-1
5
Inflation und Horizont
Durch Inflation wird Horizont (=sichtbare Universum=ct=c/H=Hubble Radius) klein gegenüber expandierte Raum-Zeit. D.h. Regionen mit kausalem Kontakt vor Inflation nicht mehr im kausalen Kontakt („leave horizon“), aber haben gleiche Temp. Sehr viel später wieder in kausalem Kontakt (“reentering horizon“).
6
Universum mit und ohne Inflation
Während Inflation dehnt sich Universum mit Geschwindigkeit v > c aus. Dies ist nicht im Wiederspruch zur Relativ. Theorie, die sich nur auf Gebiete im kausalen Kontakt bezieht. Teile des Univ. nach Inflation ohne kausalen Kontakt! Gebiete mit kausalem Kontakt wachsen mit der Zeit.
8
Flachheitsproblem (S/S)2 = 8G/3 (Str +m + - k/S2) mit = / 8G Mit crit = 3H2/ 8G, t =Str +m + und t= t/ crit folgt: k/H2S2 = t-1 kt2/3 , da H 1/t und S t2/3 . Da experimentell t 1 und t 1017 s muss gelten: k 10-11 Heutige Universum SEHR FLACH.
9
Lösung für Flachheitsproblem: wieder Inflation
Oder S(t) e t/ mit Zeitkonstante = 1 /H Alter des Univ., d.h.beschleunigte Expansion durch Vakuumenergie jetzt sehr langsam, aber zum Alter tGUT10-37s sehr schnell! H=1/t damals KONSTANT und 1037 s-1. Horizont= Bereich im kausalen Kontakt =ct = c/H wurde durch Inflation um Faktor 1037 vergrößert und Krümmungsterm -1 1/S2 um verringert.
10
Was ist Inflation? Inflation könnte entstehen durch Vakuumenergie mit konstanter Dichte, wie z.B. durch spontane Symmetrie Brechung (SSB) entsteht. Dies erzeugt abstoßende Gravitation mit exponentiellem Anwachsen des Skalenfaktors.
11
Was ist spontane Symmetriebrechung?
Higgsfeld: = 0 e i Wenn Phasen willkürig, dann Mittelwert (Vakuumerwartungswert) < |> =0 (engl.: v.e.v = vacuum expectation value) Wenn Phasen ausgerichtet, v.e.v ≠ 0! Spontan bedeutet wenn Ordnungsparameter eine Grenze unterschreitet, wie z.B. Sprungtemperatur bei der Supraleitung oder Gefriertemp. von Wasser.
12
Symmetriebrechungen
13
Was ist das Vakuumenergie?
h Vakuumfluktuationen machen sich bemerkbar durch: 1)Lamb shift 2)Casimir Effekt 3)Laufende Kopplungs- konstanten 4)Abstoßende Gravitation h h Berechnung der Vakuumenergiedichte aus Higgs-Feldern 10115 GeV/cm3 im Standard Modell 1050 GeV/cm3 in Supersymmetrie Gemessene Energiedichte (=0.7)->10-5 GeV/cm3 Warum Vakuum so leer?
14
Inflation bei konstantem 0
Oder S(t) e t/ mit Zeitkonstante = 1 /H Alter des Univ., d.h.beschleunigte Expansion durch Vakuumenergie jetzt sehr langsam, aber zum Alter tGUT10-37s sehr schnell! H=1/t damals KONSTANT und 1037 s-1. Horizont= Bereich im kausalen Kontakt =ct = c/H wurde durch Inflation um Faktor 1037 vergrößert und Krümmungsterm -1 1/S2 um verringert.
15
Abstoßende Gravitation wenn konstant
16
Exponentielle Zunahme
Sissa Ben Dahir erfand in Indien das Schachspiel Der König möchte ihn belohnen und bat ihn einen Wunsch zu äussern. Er wünschte sich ein Korn Reis für das erste Feld des Schachbretts, 2 für das zweite, 4 für das dritte, usw. Der König hatte wohl nie Exponentialfkt. studiert und willigte ein. Er war bald zahlungsunfähig und beging Selbstmord.
17
Inflationspotential Wie entsteht Inflation? Wenn Vakuumenergie überwiegt. Vakuumenergie entsteht durch spontane Symmetriebrechung, Beispiele für Symmetriebrechungen: Übergang von nicht Supraleitung zur Supraleitung, Gefrieren von Wasser Ferromagnetismus Higgsmechanismus Typische Potentialänderungen: V vorher V nachher Damit Infl. genügend lange dauert, muss Potential des Phasenübergangs sehr flach sein. Bewegungsgl. eines skalaren Higgsfeldes identisch mit einer Kugel, die Potential herunterrollt (folgt aus Euler-Lagrange Gl. einer relat. Quantenfeldtheorie). Länge des Potentials bestimmt Länge der Infl. Tiefe des Potentials bestimmt freiwerdende Energie. Dichte der Cooperpaare Dichte der Eiskristalle Magnetisation Higgsfeld
18
Spontane SSB im frühen Universum bei der GUT Skale
Aus Weidker, Wendker: Astronomie und Astrophysik
19
possible evolution of the universe
20
Gauge Coupling Unification in SUSY
21
possible evolution of the universe
22
Running Coupling Constants
23
Warum Quarks nicht als freie Teilchen existieren
Elektrische Kraft Dichte der elektrischen Feldlinien 1/r2 Photonen ungeladen keine Selbstkopplung Starke Kraft Dichte der Farbfeldlinien 1/r2 +r durch Gluonselbstkopplung (Gluonen bilden “Strings”) E=mc2 Teilchen bilden sich entlang strings, wenn es energetisch günstiger ist, potentielle Energie in Masse umzuwandeln Jets von Teilchen entlang ursprüngliche Quark-Richtung
24
Running of Strong Coupling Constant
25
Vergleich mit Phasenübergängen im Wasser
Beim Gefrieren auch flaches Potential, denn bei Unterkühlung (Potentialtopf im Zentrum) passiert zuerst gar nichts. Wenn zwei Moleküle sich ausrichten, nimmt Energie nur wenig ab. Nur wenn Gefrieren irgendwo anfängt, folgt Ausrichtung anderer Moleküle und der Phasenübergang vom ‚falschen’ zum ‚wahren‘ Vakuum findet in einem größeren Volumen statt. Erstarrungswärme gegeben durch Tiefe des Potentials und proportional zum Volumen des Phasenübergangs. Wahres Vakuum entspricht niedrigste Energiezustand Falsches Vakuum entspricht ‘unterkühlter‘ Zustand im Zentrum Aus: Alan Guth, The inflationary Universe Vorsicht: flaches Potential heisst geringe Wechselwirkung zwischen Higgsteilchen. Higgsteilchen des SM haben Quantenzahlen der schwachen WW, die schon zu stark ist. Brauche weiteres Higgsteilchen, dass keine QZ des SM hat (Inflaton). In GUT sowieso viele Higgsteilchen vorhergesagt.
26
Energieerhaltung aus Friedmann Gl.
(1) (2) Energieerhaltung aus Friedmann Gl.
27
The ultimate free lunch
p<0 p=0 Bubbles des echten Vakuums expandieren und füllen den Raum, während das falsche Vakuum mit negativer Druck zerfällt. Bei der Expansion wird die Energie des falschen Vakuums umgewandelt in Masse und kinetische Energie. Hierbei entsteht die ganze Masse des Universums ohne Energiezufuhr, da Gesamtenergie erhalten. Free Lunch! Vakuumenergiedichte u = c2 = E4 / (ħc3) J/m3 für E 1016 GeV, Diese Energie reicht um die gesamte Materiedichte des Univ, (u.a. >1078 Baryonen) zu erklären. Note: für diese Dichte ist die Hubble Konstante (8G/3) = 1037 s-1, wie vorher.
28
Mögliches Higgsfeldpotential für Inflation
Aus: Alan Guth, The inflationary Universe É=mc2 Es entstehen viele Teilchen mit hohen Energien, d.h. hohen Temp. The inflaton field can be represented as a ball rolling down a hill. During inflation, the energy density is approximately constant, driving the tremendous expansion of the universe. When the ball starts to oscillate around the bottom of the hill, inflation ends and the inflaton energy decays into particles. In certain cases, the coherent oscillations of the inflaton could generate a resonant production of particles which soon thermalize, reheating the universe.
29
Monopolproblem Bei Ausrichtung der Higgsfelder entstehen an Randgebieten topologische Defekte mit sehr hohen Energiedichten (wie Domänränder des Ferromagnetismus). E Defekt EGUT 1016 GeV. Punktdefekte haben Eigenschaften eines magnetischen Monopols. Liniendefekte sind Strings, Flächendefekte sind ‘Branes’. Da Monopole nicht beobachtet sind, müssen sie durch Inflation genügend ‘verdünnt’ sein. Bubbles des waren Vakuums müssen > sichtbare Universum sein, daher keine Domänwände in unserem Univ. und keine magnetische Monopole! Ok, für Faktor Inflation.
30
Inflationspotentiale
31
Viele Universen? p >0 p <0 Hohe lokale Dichten
an den Grenzen der Domänen und Druck- Unterschiede können Gebiete trennen in unterschiedlichen Universen. p >0 p <0
32
Lindes self-reproducing universe
33
Inflation: Quantenfluktuationen erzeugen skaleninv.
Dichtefluktuationen für flaches Potential! Aus: Alan Guth, The inflationary Universe Quantenfluktuationen tInfl x Wenn ‘slow roll‘ Bedingungen erfüllt, dann d/dt konstant und die Expansion verläuft gleich in allen Richtungen. Dies ergibt Dichtefluktuationen wie ‘white noise’
34
Skaleninvarianz der Dichtefluktuationen
Wenn alle Wellenlängen gleiche Amplituden (oder Leistung/Power) haben, dann spricht man von Skaleninvarianz (equal power on all scales)
35
Evidenz für Inflation aus der CMB
Die Entdeckung der akustischen Peaks nennt man wohl die zweite Revolution in der Kosmologie. Die erste war die Entdeckung der Skaleninvarianz der Anisotropien der CMB durch den COBE Satelliten, der gemessen hat das die Temperaturschwankungen der CMB unter großen Winkeln überall gleich sind! Dies war der erste experimentelle Hinweis auf eine Inflation im frühen Univ.! Inflation vorher postuliert von Alan Guth in 1982 um Monopol-Problem zu lösen. Inflation löste gleichzeitig Flachheitsproblem und Horizontproblem. Aus A. Guth, The inflationary Universe.
36
Zum Mitnehmen Inflation erklärt, warum CMB Temperatur in allen Richtungen gleich (Horizontproblem gelöst) CMB Temperaturfluktuationen skaleninvariant (d.h. Harrison-Zeldovich Spektrum mit power index n1, Pk) Universum absolut flach (Flachheitsproblem gelöst) Gesamtenergie des Universums gleich 0 (free lunch) Masse im Universum (aus Inflationsenergie) Symmetriebrechung erwartet bei der GUT Skale, die ca nach dem Urknall zur Inflation führt
Ähnliche Präsentationen
© 2024 SlidePlayer.org Inc.
All rights reserved.