Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Didaktik der Geometrie (5) Vorlesung im Wintersemester 2002/03 Prof. Dr. Kristina Reiss Lehrstuhl für Didaktik der Mathematik Universität Augsburg.

Ähnliche Präsentationen


Präsentation zum Thema: "Didaktik der Geometrie (5) Vorlesung im Wintersemester 2002/03 Prof. Dr. Kristina Reiss Lehrstuhl für Didaktik der Mathematik Universität Augsburg."—  Präsentation transkript:

1 Didaktik der Geometrie (5) Vorlesung im Wintersemester 2002/03 Prof. Dr. Kristina Reiss Lehrstuhl für Didaktik der Mathematik Universität Augsburg

2 Spezielle Beweismethoden

3 Euklidische Methode oder Kongruenzgeometrische Methode Abbildungsgeometrische Methode Die Beweise basieren auf Kongruenzsätzen bzw. Ähnlichkeitssätzen. Die Beweise basieren auf Kongruenzabbildungen bzw. Ähnlichkeitsabbildungen.

4 Kongruenzgeometrische Methode Grundlage: Sätze über Kongruenz und Ähnlichkeit. Kernidee: Man sucht in einer Figur Paare kongruenter Teildreiecke und beweist deren Kongruenz mithilfe der Kongruenzsätze. Entsprechend ist eine wesentliche Voraus- setzung die Kenntnis der Kongruenzsätze.

5 Kongruenzgeometrischer Beweis Satz: Sei ABC ein gleichschenkliges Dreieck, sodass die Seiten AC und BC kongruent sind. Dann liegt C auf der Mittelsenkrechten m AB. Beweis: Sei M Mittelpunkt der Strecke AB. Dann sind die Dreiecke AMC und MBC nach dem Kongruenz- satz SWS kongruent, denn es ist AC  BC, AM  MB und .

6 Abbildungsgeometrische Methode Grundlage: Anwendung von Kongruenz- abbildungen unter Verwendung ihrer wesentlichen Eigenschaften Kernidee: Man wendet eine Kongruenzabbildung auf eine Figur oder Teilfigur an und folgert die Gleichheit von Längen und/oder Winkeln.

7 Abbildungsgeometrischer Beweis Satz: Sei ABC ein gleichschenkliges Dreieck. Dann liegt C auf der Mittelsenkrechten m AB. Beweis: Es gilt AC  BC, also gibt es eine Gerade m durch C, sodass A durch Spiegelung an m auf B abgebildet wird. Die Gerade m ist aber gerade die Mittelsenkrechte auf der Strecke AB.

8 Vorteile der beiden Methoden Kongruenz- geometrische Methode Klare Grundlage in den (wenigen) Kongruenzsätzen Klare Ziele bei der Beweisfindung Abbildungs- geometrische Methode Realisierung auf der Handlungsebene möglich (Lehre vom Anschauungsraum) Bezug zu Symeetrieeigenschaften

9 Beispiele

10 Kongruenzgeometrischer Beweis

11 Abbildungsgeometrischer Beweis

12 Beispiel Satz: In einem Parallelogramm sind die gegenüberliegenden Seiten gleich lang.

13 Spezielle Beweismethoden Indirektes Beweisen Satz: Sei ABC ein rechtwinkliges Dreieck mit


Herunterladen ppt "Didaktik der Geometrie (5) Vorlesung im Wintersemester 2002/03 Prof. Dr. Kristina Reiss Lehrstuhl für Didaktik der Mathematik Universität Augsburg."

Ähnliche Präsentationen


Google-Anzeigen