Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Ein paar Daten zum merken

Ähnliche Präsentationen


Präsentation zum Thema: "Ein paar Daten zum merken"—  Präsentation transkript:

1 Ein paar Daten zum merken
Mittlerer Radius: km / nm Mittlerer Umfang: km / nm Rotation am Äquator: kmh / 900 kt 40000 km : 360° = 111 km // 111 Km : 60° = km 1 Minute = 1 NM

2 Längenmaße Geschwindigkeiten NM Km / 2 + 10% Km NM * 2 - 10° Ft
1 NM (auch Seemeile) = 1 Bogenminute auf dem Meridian Längenmaße 1 NM = 1,852 km (111 / 60 = 1,852) 1 st.M = 1,609 km (englische Meile oder Statute Mile) 1 Fuß = 0,305 Meter km/h Segelflug horizontal m/s Km/h = m/s * 3,6 Segelflug vertikal Knoten (kt) 1 kt. = 1 NM/h Luftfahrt horizontal ft/min Ft/min = m/s * 200 Luftfahrt vertikal Geschwindigkeiten NM Km / % Km NM * ° Ft Meter * 10 / 3 Meter Ft / 10 * 3 Ft /Min m/s * 200 Faustformeln

3 90 90 Breitenkreise Seitenansicht 60 60 30 30 000 000 30 30 60 60
E r d a c h s e 60 60 30 30 000 000 30 30 60 60 90

4 Breitenkreise (Breitenparallele) Zusammenfassung
Die Breitenkreise liegen parallel zum Äquator. Die Breitenkreise werden zu den Polen hin kleiner. Durch jeden Punkt auf der Erde verläuft ein Breitenkreis und bestimmt damit die geographische Breite dieses Punktes. Der Äquator hat die Breite 0°. Die Pole haben die Breiten 90°N bzw. 90°S. Lothar Nerlich

5 Längengrade Draufsicht 180 135 135 Pol 090 090 045 045 000

6 Längenkreise (Meridiane) Zusammenfassung
verlaufen durch die Pole und senkrecht zu den Breitenkreisen Längenkreise sind alle gleich groß Durch jeden Punkt auf der Erde verläuft ein Längenkreis und bestimmt damit die geographische Länge dieses Punktes. Der Meridian, der durch die Sternwarte von Greenwich verläuft hat die Länge 0°. Die Meridiane werden angegeben in ° E bzw ° W

7 N/360 S/180 NNW NNE GN NW/315 NO/ 45 WNW ENE W/270 E/090 WSW ESE
SSW GS SSE S/180

8 Weitere Begriffe: Großkreis oder Orthodrom / Loxodrome

9 Ortsbestimmung: Wir ignorieren hier, dass die Meridiane an den Polen konvergieren
150 120 090 060 030 000 030 060 090 120 150 180 90 N 75 N 60 N 45 N 30 N 15 N 00 00 15 N 30 N 45 N 60 N 75 N 90 N 000 45:00:00 N / 60:00:00: E

10 Übungen zur Ortsbestimmung
Wahlstedt N 54:04:43 E 09:56:26 Neumünster N 53:03:14 E 09:12:31 Weser-Wümme N 53:33:34 E 09:29:53 Stade N 53:59:40 E 09:34:43 Itzehoe

11 Übungsaufgabe 15:54:30 N 10:33:30 S ------------- 26:28:00
Der Breitenunterschied zwischen den Orten folgender geografischer Breiten beträgt: Ort A: 15:54:30 N Ort B: 10:33:30 S 15:54:30 N 10:33:30 S 26:28:00

12 Übungsaufgabe Ein Ort hat die geografische Breite 62:33:00 N. Wie ist die geografische Breite eines Ortes, der 240 NM nördlich davon liegt ? 1 min = 1 NM 240 NM = 240 Min. 240 : 60 = 4° 62:33: ° = 66:33:00 N

13 Übungsaufgabe 04:14:28 E 02:30:30 E -------------- 01:43:58
Der Längenunterschied zwischen den Orten folgender geografischer Längen beträgt: Ort A: 04:14:28 E Ort B: 02:30:30 E 04:14:28 E 02:30:30 E 01:43:58

14 Bewegung der Erde Die Erde dreht sich von West nach Ost
1 Umdrehung dauert 24 Stunden In einer Stunde dreht sich die Erde um 15° Um 12:00 UTC steht die Sonne genau über dem Nullmeridian Frage: In welcher Zeit hat sich der Sonnenstand um 30 Winkelgrade geändert Antwort: 2:00 Stunden

15 Übungsaufgabe In welcher Zeit hat sich der Sonnenstand um 27 Winkelgrade geändert ? 360° = 24 Stunden (1440 Min.) 027° = ? 1440 x 27 / 360 = 108 Minuten Dreisatz

16 Die Jahreszeiten 23,5° Ebene der Umlaufbahn Erdachse Erdachse

17 Kartenkunde

18 Die Erdkugel wird zur Fläche

19 Projektionsskizze Karte Erdoberfläche

20 M e r c a t o r - P r o j e k t i o n

21 Mercatorprojektion Zusammenfassung
Winkeltreu = Ja Meridiane parallel Längentreue nur an der Mittelbreite Längen sind ansonsten verzerrt Hat sich nicht durchgesetzt.

22 Berührungskegelprojektion
Bezugsbreitenkreis Auch diese Projektion ist für die Fliegerei nicht brauchbar, weil sie nur an der Berührungsstelle flächen- und winkeltreu ist.

23 Schnittkegel - Projektion
Bezugsbreitenkreis Bezugsbreitenkreis Diese „Lambertsche Schnittkegelprojektion“ ist winkel- und annähernd flächentreu zwischen den Bezugsbreitenkreisen. Auf der ICAO-Karte Blatt Hamburg lauten zum Beispiel die Bezugsbreiten: N 50 und N54

24 Ausschnitt ICAO-Karte Hamburg 2013

25 ICAO-Luftfahrtkarte - Informationen
Vorderseite Flugsicherheitsaufdruck alle nötigen Navigationsmerkmale Gradzahlen der Meridiane am Rand Herausgeber der Karte am Rand verwendetet Symbole am Rand das Gültigkeitsjahr der Karte gültiger Maßstab der Karte am Rand

26 ICAO-Luftfahrtkarte - Informationen
Rückseite ATIS Frequenzen Volmet Frequenzen Höhenmessereinstellungen Halbkreisflughöhen Chema der Luftraumstruktur Lichtsignale Sicherheitshöhen - Kalkulation

27 Beispiele zu den Symbolen -1

28 27 Maximum Elevation (Höhenpunkt Auswertung) 2331 ft 328 ft 30 ft
Komponenten: über MSL Höhenpunkt im Kartenquadrant z.B.: 2331 ft + ein angenommenes Hindernis mit 328 ft. (Kartendarstellung erst ab 329 ft) 328 ft Sicherheits-Zuschlag 30 ft Zwischensumme: 2.689 ft aufgerundet auf volle 100 ft. 27

29 26 Maximum Elevation (Hindernis Auswertung) 2463 ft 60 ft 2.523 ft
Komponenten: über MSL Hindernishöhe im Kartenquadrant z.B.: 2463 ft Sicherheits-Zuschlag 60 ft Zwischensumme: 2.523 ft aufgerundet auf volle 100 ft. 26 Es wird gegebenenfalls der höhere Wert zwischen Höhenpunkt oder Hindernisauswertung in der Karte dargestellt.

30 10 13 Maximum Elevation AMSL 548 ft 1223 328 ft ------- 030 ft 0060
Beispiel Bungsberg: über MSL Über MSL Höhenpunkt Hindernis Höhenpunkt / Hindernis 548 ft 1223 + ein angenommenes Hindernis mit 328 ft. (Kartendarstellung erst ab 329 ft) 328 ft Sicherheits-Zuschlag 030 ft 0060 Zwischensumme: 906 ft 1283 aufgerundet auf volle 100 ft. 10 13

31 Zum Kartenmaßstab 1:500.000 15 km sind 1.500.000 cm also:
Ein Flug führt von A nach B. Auf der Karte beträgt diese Strecke 6 cm bzw 15 km. Um welchen Maßstab handelt es sich ? 15 km sind cm also: 6 : oder 1 :

32 Erarbeitung des Kurschemas

33 N/360 S/180 NNW NNE GN NW/315 NO/ 45 WNW ENE W/270 E/090 WSW ESE
SSW GS SSE S/180

34 GN TC 50° ablesen

35 Beispiele zur Kurs- und Distanzentnahme ermitteln (TC)
Startort Zielort Neumünster (EDHN) Lübeck (EDHL) Rendsburg (EDXR) Uetersen (EDHE) Westerstede-Felde (EDWX) Wismar (EDCW) Karlshöfen (EDWK) St.Michel (EDXM) Itzehoe (EDHF) St. Peter Ording (EDXO) Hartenholm (EDHM) Flensburg (EDXF) TC (rwK) Dist.nm 121 / 32 174 / 35 74 / 133 6 / 39 301 / 336 / 56

36 Windberücksichtigung (WCA)
GN Kurs über Grund Kartenkurs (TC) Wind

37 Vektoren des Winddreieckes
Bezeichnung Symbole Grundvektor (TC und VG) Steuerkursvektor (TH und VE) Windvektor (Windrichtung und Stärke) >> > >>>

38 Winddreieck Nr.1: TC 250° / WV 330°20kt (37kmh) / VE 80 Kmh
+luv 27 TH 277 ===== VE 80 kmh 27° 37 kmh VG 65 kmh

39 Winddreieck Nr.2: TC 110° / WV 30°15kt (27,8 kmh) / VE 60 Kmh
-luv 27 TH 83 ====== 60 kmh 27° 27,8 kmh VG 48 kmh

40 Winddreieck Nr.3: TC 30° / WV 160°30kt / VE 80 kt
+luv 17 TH 47 ====== 30 kt VG 95 kt 17°

41 Winddreieck Nr.4: TC 210° / WV 160°30 kmh / VE 80 Kmh
-luv 17 TH 193 ===== VG 57 kmh 17° VE 80 kmh 30 kmh

42 WCA und VG mittels Rechner
Flight Plan Leg  HDG/GS  Eingaben Die 4 Dreiecke nachrechnen

43 Windbestimmung: Sie fliegen von A in Richtung B auf rwK 130° und einem WCA von 10° links. Die TAS beträgt 125 kt. Nach 30 Minuten stellen Sie anhand von Bodenmerkmalen fest, dass Sie sich in einer Position befinden, die von A in Richtung 140° 70 nm entfernt ist. Bestimmen Sie den Wind nach Richtung und Stärke. Die 3 betroffenen Vektoren sind farblich mit blau-grün-rot unterlegt. Vorgehensweise: einen Hilfsmeridian nehmen den Steuerkursvektor einzeichnen (130-10=120°) und 12,5 cm lang  den geflogenen Grundvektor einzeichnen (140°) und 14 cm lang für die VG * die offenen Endpunkte verbinden, das ist dann der Windvektor (22°mit4,8cm=48 kt) * 14 cm daher, weil sich die 70 nm auf 30 Minuten beziehen. Der Vektorwert bezieht sich immer auf eine Stunde ! zur Zeichnung

44 > >> >>>
TH 120° (130-10) TAS 125 kt = 12,5 cm TC 140° VG 140 kt = 14 cm DA > >> >>> WV = 4,8 cm = 48 kt aus 22°

45 Windbestimmung mittels Rechner
Flight Act Leg  Unknown Wind  Eingaben Dreieck zur Windbestimmung nachrechnen...

46 >>> Flight Act Leg X / H-Wind Eingaben
Seitenwindberechnung: Bahn 36 / WV 45° 60 kmh / 42 kmh CWC Flight Act Leg X / H-Wind Eingaben >>> 42 kmh HWC 45° 36

47 Ortsmissweisung (OM oder VAR)
Der Magnetkompass zeigt zum magnetischen Nordpol und nicht zum geografischen Pol! GN GN MN MN

48 Bestimmung der Ortsmissweisung
In der ICAO-Karte sind alle Orte mit derselben Ortsmissweisung durch Isogonen miteinander verbunden. Orte, an denen die Ortsmissweisung 0° beträgt, sind durch die Agone miteinander verbunden.

49 Deviation rwN mwN KN

50 Deviation Deviationstabellen
Der Kompass im Flugzeug erfährt durch Magnetfelder des Flugzeugs (Stahlteile, elektrische Geräte u.s.w.) eine weitere Ablenkung. Der ins Flugzeug eingebaute Kompass hat also seinen „eigenen“ Nordpol, diesen Bezugspunkt nennt man Kompass-Nord. Diese Ablenkung wird weitestgehend kompensiert, ein kleiner Restfehler bleibt jedoch bestehen. Dieser „Restfehler“ ist nicht konstant, sondern variiert je nach der Richtung, in die das Flugzeug fliegt. Deviationstabellen

51 Deviationstabelle Alternative 1

52 Deviationstabelle Alternative 2
For 360 030 060 090 120 150 180 210 240 270 300 330 Steer 359 061 093 121 179 208 237 269 297 328 Datum: Prüfer: Mustermann

53 Zusammenfassung zum Kurschema:
TC rwK Distanz in NM +- WCA luv VG in kt = TH rwWK Zeit +- OM VAR Kraftstoffverbrauch = MH mwWK +- Dev = CH KSK

54

55 Übungsaufgaben – Vorwärtsrechnung hin zum CH
Beispiel 1 TC 080 luv + 07 OM 08 DEV - 02 Beispiel 2 TC 138 luv - 12 OM + 04 DEV - 03 Beispiel 3 TC 322 luv +18 OM - 06 DEV + 03 CH = 97 CH = 125 CH = 343

56 Übungsaufgaben - Rückrechnung
MH OM TH ? 297 - 04 318 + 08 007 - 14 146 + 21 CH DEV MH ? 048 05 094 + 02 207 04 312 + 03 293 043 326 96 353 203 167 315

57 weitere Übungsaufgaben zum Kurschema
GN Der (WCA) ist der Winkel zwischen: TH und TC TC und MC TH und MH MH und CH CN MN OM TC DEV TH WCA

58 weitere Übungsaufgaben zum Kurschema
Bei einem TH (rwSK) von 270° beträgt der Luvwinkel -10° Wie ist der TH (rwSK) für den Umkehrkurs ? 270 TH WCA heraus rechen = 280 Gegenkurs berechnen = 100 WCA (luv) einrechnen = 110

59 Hilfsmittel für weiter Übungsaufgaben zum Kurschema
TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK TC (rwK) ohne WCA OM (VAR) MC (mwK) Dev CC (KK

60 weitere Übungsaufgaben zum Kurschema
Gegeben sind: OM =2°E Dev= -3° CC=127° Gesucht werden: MC und TC TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK TC (rwK) ohne WCA OM (VAR) MC (mwK) Dev CC (KK 126° +2° 124° -3° 127°

61 weitere Übungsaufgaben zum Kurschema
Gegeben sind: TC=023° MC=29° Dev.=+2° Gesucht werden: OM(VAR) und der CC(KK) TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK TC (rwK) ohne WCA OM (VAR) MC (mwK) Dev CC (KK 023° -06° 029° +02° 027°

62 weitere Übungsaufgaben zum Kurschema
Gegeben sind: CH=245° OM=3°E luv=+3° Dev= -4° Gesucht wird der RWK (TC) TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK 241 +03 244 +03 241 -04 245

63 weitere Übungsaufgaben zum Kurschema
Gegeben sind: TC=270° OM=3°W Dev=2°W CH=275° Gesucht wird der WCA (Luvwinkel) TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK 270 270 -03 273 -02 275

64 5°E 047° 049° 5°W 037° 039° 5°E 037° 035° 5°E 037° 039° TC (rwK)
Gegeben sind: TC 30°/MC 25°/WCA +12°/Dev -2°/ Nennen Sie das Ergebnis in der Reihenfolge: OM(VAR)->MH(mwSK)->CH(KSK) TC (rwK) luv (WCA) TH (rwWK) OM (VAR) MH (mwWK) Dev CH (KSK 30° TC (rwK) OM (VAR) MC Dev CC (KK) 30° +12° 42° 25° -02° +05° 27° 37° -02° 5°E 047° 049° 5°W 037° 039° 5°E 037° 035° 5°E 037° 039° 39°

65 Übungsaufgaben zur Zeitberechnung Zeit = 60 x Distanz / VG (Dreisatz)
Zeit Min. 120 km 070 kmh 055 km 140 kmh 085 km 040 kt. (74 kmh) 090 km 090 kmh 090 nm 090 kt 040 nm 160 kmh (86 nm) 103 Flight Plan Leg Leg Time Eingaben 24 69 60 60 28

66 Übungsaufgabe zur Zeitberechnung Zeit = 60 x Distanz / VG (Dreisatz)
Zwei Orte liegen 150 km voneinander entfernt. Der RWK (TC) beträgt 270°. Bei Windstille würde man für den Hin-und Rückflug (ohne Zwischenlandung) 02:00 Stunden benötigen. Bei enem tatsächlichen Wind von W/V = 090°20kt dauert der Hin-und Rückflug wie lange ? Was benötigen wir für die Formel ? : Distanz: 150 km VG bei Windstille: 150 kmh (300 km : 2 Stunden) VG beim Hinflug: 187 kmh (150 kmh + 37 kmh ) VG beim Rückflug: 113 kmh (150 kmh kmh ) 48 Min 80 Min

67 Ermittlung der VG im Fluge
Auf der Luftfahrkarte ICAO 1: wird für eine Strecke von 10,8 cm eine Flugzeit von 20 Minuten benötigt. Die VG beträgt demnach ? 10,8 cm = 54 km 20 Min. = 54 km 60 Min = ?? Km Flight Act Leg GS Eingaben Dreisatz 54 x 60 / 20 = 162 kmh VG

68 Für eine Strecke von 170 km wird bei angenommener Windstille eine Flugzeit von 01:05 Std. geplant. Beim Durchfliegen der Strecke wird festgestellt, dass für eine Distanz von 60 km eine Zeit von 26 Min. benötigt wurde. Wie war die Windkomponente? VG1= 170 / 65 x 60 = VG2= 60 / 26 x 60 = 157 kmh 138 kmh Flight Act Leg GS Eingaben 19 kmh (10 kt.) Gegenwind

69 A C B 84 NM 35 NM 25 Min. Gesamtflugzeit: 25 / 35 x 84 = 60 Minuten
Eine gerade Strecke von A nach B mit einem dazwischen liegenden Kontrollpunkt C beträgt 84 NM Über dem Kontrollpunkt C, der 35 NM von A entfernt ist, stellen Sie fest, dass die Flugzeit bis hier her 25 Minuten beträgt. Wie groß ist die Gesamtflugzeit von A nach B ? 84 NM A C B 35 NM 25 Min. Gesamtflugzeit: 25 / 35 x 84 = 60 Minuten

70 Übungsaufgaben zum Kraftstoffverbrauch Verbrauch = Liter pro. Std
Übungsaufgaben zum Kraftstoffverbrauch Verbrauch = Liter pro. Std. x Zeit / 60 (Dreisatz) Im Folgenden verbraucht das Flugzeug 38 Liter pro Stunde: Flugzeit Verbrauch 1:40 0:75 2:25 1:85 3:30 63,3 47,5 Flight Fuel Fuel Burn Eingaben 91,8 91,8 133.0

71 F ü r d e n S e g e l f l u g

72 Ermittlung der besten GZ bei Windstille und ohne Thermik
85 km/h = 36,3 GZ 0,65 m/s (= 3,6*0,65=2,34 km/h) mittl.VE=70

73 Entfernung: Höhe x Gleitzahl
Wie werden nun Fragen beantwortet nach: Der benötigten Mindestabflughöhe zum Erreichen eines Zieles Der möglichen Entfernung für den Endanflug Höhe Entfernung: Höhe x Gleitzahl Höhe: Entfernung : Gleitzahl Achtung: von gleichen Werten ausgehen !! E n t f e r n u n g

74 Also: Höhe x GZ=Entfernung
In welcher Entfernung muss mit dem Endanflug begonnen werden und welche Flugzeit wird benötigt, um den Zielflugplatz in 200 ft GND zu erreichen? Gegeben sind: ELEV=1509 ft MSL; Ve= 110 km/h; GZ=25; kein Wind; Wolkenuntergrenze=7.500 ft. Also: Höhe x GZ=Entfernung 7.500 ft. Wolkenuntergrenze 1 km Höhe = 25 km weit 1,460 km Höhe = ? 1.509 ft. - Geländehöhe 25 / 1 * 1,460 = 36,5 km 1.000 ft. - Wolkenabstand 200 ft. - Ankunftshöhe ft. = Arbeitshöhe = Meter 1,460 km x 25 GZ = 36,5 km Entfernung 60 / 110 x 36,5 = 20 Minuten /oder Rechner

75 Also: Entfernung / GZ = Höhe = 1758 Ausgangsmindesthöhe
Welche Mindesthöhe ist erforderlich und welche Flugzeit wird benötigt, um mit einer Sicherheitshöhe von 200 Meter den 55 km entfernten Zielflugplatz zu erreichen? Gegeben sind: ELEV 600 ft MSL; Ve.120 km/h; Gleitzahl 40; kein Wind . Also: Entfernung / GZ = Höhe 1375 Meter Arbeitshöhe (55 km / GZ40 = 1,375) + 200 Meter Ankunftshöhe Der Dreisatz für die Höhe lautet: für 40 km Entfernung = 1 km Höhe für 55 km = ? Höhe 1 / 40 x 55 = 1,375 km + 183 Meter ELEV = 1758 Ausgangsmindesthöhe Der Dreisatz für die Zeit lautet: für 120 km werden 60 Min benötigt für 055 km werden ? 60 / 120 * 55 = 28 Minuten 60 / 120 x 55 = rd. 28 Minuten

76 Also: Entfernung / GZ = Höhe
In welcher Höhe über Grund wird der Zielflugplatz erreicht und welche Zeit wird benötigt? Gegeben sind: Elevation 334 Meter; Distanz 42 km; VE 110 km/h; GZ 35; kein Wind; Wolkenuntergrenze 7000 ft. Also: Entfernung / GZ = Höhe Meter Wolkenuntergrenze (7000 ft.) Meter (42 km / GZ 35 = 1,2 km) nötige Arbeitshöhe Meter Wolkenabstand beim Abflug Meter Elevation = Meter Ankunftshöhe über Grund 60 / 110 x 42 = 23 Minuten

77 Die Grundlagen sind geschafft Die Funknavigation kommt gesondert


Herunterladen ppt "Ein paar Daten zum merken"

Ähnliche Präsentationen


Google-Anzeigen