Forschendes Lernen Forschendes Lernen in der Mathematik

Slides:



Advertisements
Ähnliche Präsentationen
ELTERN ERWÜNSCHT ! ? Wie Zusammenarbeit im System Schule gelingen kann Leitfaden Elternarbeit von: NLQ und KER Niedersachsen Vortag KER Osnabrück Land.
Advertisements

Klasse 7 Planung einer Unterrichtsstunde – mit DGS Carina Rosenhauer Seminar zum fachdidaktischen Blockpraktikum SS 2011.
Lernfeld 4.
Der Subjektorientierte Bildungsansatz der Jugendarbeit Neue Anregungen für Globales Lernen in der Freizeit.
Latein braucht doch niemand mehr... Oh doch!!!. Latein schreibt man, wie man es spricht: die Zeit zu größerer Sicherheit in deutscher Rechtschreibung.
Evaluation von Coachingprozessen Herr Prof. Dr. Geißler Evaluation von Coachingprozessen Phase 6 Teil 4 KB
SE Virtualisierung von Universitäten Zwischenbericht Liebe KollegInnen, Anbei finden Sie eine PowerPoint-Vorlage zur Erarbeitung eines kurzen Zwischenberichts.
Schreibwerkstatt. Anfrage Sehr geehrte Damen und Herren, für unsere Anlage benötigen wir ein Molekularsieb mit der Oberfläche von 600 m2/g. Deshalb bitten.
Berufsfachschule für Altenpflege
Konstruktionsmerkmale 2 des neuen Bildungsplans der Schule für Hörgeschädigte in B.-W. Stecher, Rau , Löschmann, Martens-Wagner, Jacobsen, Erdmann-Barocka.
ETWAS ZUM NACHDENKEN !.
Themen und Inhalte 4 Inhaltsbereiche, die immer gleich bleiben:
Projekte planen und durchführen
Blended Learning-Team
Achte auf Deine Gedanken,
3. Klasse von Frau Kunze Herzlich willkommen!.
Herzlich willkommen im MathePortal von mathepower.de
Präsentation "Geschäftsplan"
Bitte kreuzen Sie in der folgenden Tabelle an,
Anleitung für Lehrer/innen Diagnose-instrument für Schul-Dropout
VolksschuldirektorInnen-Konferenz Visuelles Denken in der Volksschule
Medienkompetenztraining im Chemieunterricht Erkundung des Chemiestandorts Piesteritz durch Geocaching und Veranschaulichung durch Erstellen eines digitalen.
Willkommen bei PowerPoint
Ihre Firmenbroschüre Dies ist ein großartiger Platz für Ihre Leitlinien. Sie können diese frische, professionelle Broschüre wie vorliegend verwenden.
So gelingt der digitale Wandel in einem Landwirtschaftsbetrieb
Assistive Technologien
Keine Bildungsbremse! – NEIN zur schädlichen Initiative!
Schüler aktivierende Unterrichtsformen im Mathematikunterricht
Bei dieser Präsentation wird sicher eine Diskussion mit dem Publikum entstehen, die zu Aktionsschritten führt. Verwenden Sie PowerPoint, um diese Aktionsschritte.
Motivation ist wichtiger als Intelligenz
Hausaufgabenfibel der Bernhardschule
EhP - Teamorientierte Ausbildung
Kleine Füße-sicherer Schulweg
„LERN VON MIR“ Modul 5 – Kenntnis der Person
IT an Schulen - Ergebnisse einer Befragung von Lehrern in Deutschland - - November
Ziel: Kinder in ihren motorischen Fähigkeiten stärken.
5S – Zahlenspiel Dr.-Ing. Ralf Gerke-Cantow
Mehr als Alles… Fokussiert leben.
ETWAS ZUM NACHDENKEN !.
Wie kommt man zu „richtigen“ Entscheidungen?
Wie geht es weiter im Projekt. Wochenrückblick vom bis
Methodencurriculum : „Rück-und Ausblick“
Qualifizierungsreihe für Ausbildungsbeauftragte
Was tun nach der Matura?.
„Ein Projekt geht zu Ende!“ Wochenrückblick vom bis
Die Challenge ist vorbei!
Neue Medien und Computereinsatz im Chemieunterricht
Geschäftsplanpräsentation
Jugendsozialarbeit an der Elsbethenschule
DESIGN THINKING.
Methodenwahl Grundsätze der Methodenwahl Ziele:
Französisch 2019 Hinweise für die Lehrkraft
Stadt Esslingen (Status )
Mit dem Eintritt in die 8. Klasse beginnt für die Schülerinnen und Schüler der Startschuss für die Berufsvorbereitung. Diesen Weg wollen wir mit euch.
GEBEN UND ERHALTEN VON FEEDBACK
Wissenschaftliches Projekt
? Warum eigentlich Reli ???.
Mein Verhalten im Netz Wie verhalte ich mich online richtig?
06a Persönliche Anrede – Texte korrigieren
Ein Modell zur Beteiligung von Kindern und Jugendlichen
Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 2.1 und B Lösungen.
Beispiel für eine Grafik gebundene Textproduktion – DaF B1+/B2
Kinder und Jugendliche in ihrer Vielfalt fördern / Modul 3 – Didaktik
Beispielziel Inspiration Aktionen / Aufgaben Ressourcen Reflexion
Neue Medien und Computereinsatz im Chemieunterricht
Kinder und Jugendliche in ihrer Vielfalt fördern / Modul 3 – Didaktik
 Präsentation transkript:

Forschendes Lernen Forschendes Lernen in der Mathematik Modul IE-3: Eigenschaften von Aufgaben zum Problemlösen In this tool we further explore the meaning of problem solving and what a problem in mathematics may look like.

Übersicht Ziele: Die Hauptmerkmale von Problemlöse-Aufgaben verstehen und ermitteln, welche Fähigkeiten SchülerInnen durch die Bearbeitung solcher erwerben. Wir werden: Beispielaufgaben besprechen Hauptmerkmale von Problemlösen verstehen Die Fähigkeiten ermitteln, die SchülerInnen für die erfolgreiche Bearbeitung dieser Aufgaben benötigen. Zuerst untersuchen wir vier unterschiedliche Aufgaben, indem wir ihre Hauptmerkmale vergleichen und so ihre Besonderheiten feststellen. (Sie müssen nicht die vom Toolkit zur Verfügung gestellten Aufgaben nutzen. Sie können an Ihren Lehrplan angepasste Aufgaben nutzen, aber sie sollten eine Auswahl an unterschiedlichen Eigenschaften aufweisen, zum Beispiel eine Textaufgabe oder eine Szenario-basierte Aufgabe mit etwas Struktur; eine offene und weniger strukturierte Untersuchung eines Sachverhalts; eine Bewertungsaufgabe; eine strukturierte Aufgabe mit nur einer richtigen Antwort). Mit den Beispielen soll eine Diskussion darüber angestoßen werden, was eine Aufgabe zum Problemlösen ist und welche mathematischen und persönlichen Kompetenzen mit diesen Aufgaben gefördert werden können.

Aufgaben vergleichen Lesen Sie sich die Beispielaufgaben durch. In Paararbeit: Vergleichen Sie die Aufgaben Identifizieren Sie die Hauptmerkmale der Aufgaben Und die Unterschiede zwischen ihnen Bitten Sie zunächst die Lehrer, die Beispielaufgaben durchzulesen und sich dann in Paaren zusammenzufinden, um sie zu vergleichen, d.h. die Hauptmerkmale jeder Aufgabe herauszufinden und dann die Unterschiede zwischen den Aufgaben zu benennen. Vorschläge für Beispielaufgaben: Farben mischen, Zäune bauen, Das magische V, Prismen skizzieren

Eigenschaften und Anforderungen Besprechen Sie Ihre Ergebnisse in der ganzen Gruppe. Versuchen Sie in der Gruppe die Hauptmerkmale jeder Aufgabe zusammenzufassen. Welche Anforderungen stellen die Aufgaben an die SchülerInnen? Sortieren Sie die Aufgaben nach den gestellten Problemlöse-Anforderungen. Finden Sie sich dann wieder in der ganzen Gruppe zusammen und besprechen Sie die Ergebnisse der Diskussionen. Listen Sie die Hauptmerkmale jeder Aufgabe auf. Diskutieren Sie die Anforderungen jeder Aufgabe an die SchülerInnen und wie Sie die Aufgaben nach den gestellten Problemlösen-Anforderungen sortieren würden.

Die Hauptmerkmale nach Prioritäten ordnen Besprechen Sie die Karten in Kleingruppen und ordnen Sie die Merkmale in die folgenden Kategorien ein, je nachdem, wie oft Sie sie in einer Aufgabe zum Problemlösen erwarten würden: Immer Manchmal Nie Für den nächsten Teil sollten die Lehrer in Kleingruppen zusammenarbeiten. Geben Sie jeder Gruppe ein Set der „Problemlöse-Karten“ (oder nutzen sie Handout 5). Auf den Karten sind einige der Merkmale, die üblicherweise mit Problemlösen assoziiert werden, aufgeführt. Bitten Sie die Lehrer, diese Merkmale zu besprechen und sie in die folgenden Kategorien einzuordnen: Immer – das Merkmal ist in jeder Aufgabe zum Problemlösen zu finden Manchmal – das Merkmal ist in manchen Aufgaben zum Problemlösen zu finden Nie – das Merkmal ist in keinen Aufgaben zum Problemlösen zu finden. (Anmerkung: Es kann schwierig sein, Karten für die Nie-Kategorie zu finden. Die Aufgabe ist absichtlich so gestaltet, dass die Lehrer angeregt werden, sich tiefere Gedanken darüber zu machen, was Teil einer Aufgabe zum Problemlösen ist). Es könnte auch Gruppen geben, die weitere Merkmale hinzufügen möchten. Sie sollten darin unterstützt werden.

Die Aufgaben besprechen Kommen Sie in der Gruppe zusammen und besprechen Ihre Erfahrungen beim Einordnen der Karten in Kategorien. Welche Eigenschaften würden Sie immer in einer Aufgabe zum Problemlösen erwarten? Welche Eigenschaften würden Sie manchmal erwarten? Welche Eigenschaften würden Sie nie erwarten? Welche weiteren Eigenschaften würden Sie erwarten? Bitten Sie die Lehrer, ihre Gedanken mit der ganzen Gruppe zu teilen. Dies sollte Diskussionen über die variierende Art von Aufgaben zum Problemlösen anregen und darüber, dass manche Aufgaben SchülerInnen mehr Möglichkeiten als andere bieten, ihre Kompetenzen im Problemlösen auszubauen. Solche Beschränkungen sind aber nicht immer unerwünscht, da SchülerInnen sich manchmal auf bestimmte Aspekte des Problemlösens konzentrieren müssen.

Problemlöse-Fähigkeiten Finden Sie sich wieder in Kleingruppen zusammen und kommen Sie auf eine oder zwei der Beispielaufgaben zurück. Besprechen Sie: Das benötigte mathematische Wissen und die benötigten mathematischen Kompetenzen Anderes benötigtes Wissen (zum Beispiel berufliches Wissen) Andere benötigte Kompetenzen (zum Beispiel persönliche Kompetenzen) (Sie können Handout 6 für Notizen benutzen) Bitten Sie die Lehrer, wieder in Kleingruppen zu arbeiten und auf eine oder zwei der Beispielaufgaben zurückzukommen. Bitten Sie sie diesmal, folgendes zu besprechen: Das benötigte mathematische Wissen und die benötigten mathematischen Kompetenzen Anderes benötigtes Wissen (zum Beispiel berufliches Wissen) Andere benötigte Kompetenzen (zum Beispiel persönliche Kompetenzen). Sie sollten Handout 6 benutzen, um ihre Gedanken aufzuschreiben. Lehrer finden es oft einfacher, benötigtes mathematisches Wissen als benötigte mathematische Kompetenzen zu benennen.

Vorschläge für Fähigkeiten Die folgenden Fähigkeiten wurden vorgeschlagen. Stimmen Sie zu? Welche würden Sie hinzufügen? Unterschiedliche Lösungsstrategien entwickeln und einsetzen Muster erkennen und reproduzieren Ausdauernd arbeiten Vertrauen in die eigenen mathematischen Fähigkeiten haben Eine Textaufgabe aus einem unbekannten Kontext lesen und interpretieren Die mathematischen Prozesse, die für die Lösung des Problems benötigt werden, erkennen Selbstreflektion Den Fortschritt beim Lösen der Aufgabe kritisch reflektieren Im Team arbeiten. Die folgende (unvollständige) Liste kann benutzt werden, um Ideen anzuregen: Unterschiedliche Lösungsstrategien entwickeln und einsetzen Muster erkennen und reproduzieren Ausdauernd arbeiten Vertrauen in die eigenen mathematischen Fähigkeiten haben Eine Textaufgabe aus einem unbekannten Kontext lesen und interpretieren Die mathematischen Prozesse, die für die Lösung des Problems benötigt werden, erkennen Selbstreflektion Den Fortschritt beim Lösen der Aufgabe kritisch reflektieren Im Team arbeiten. Fragen Sie die Lehrer, ob sie den Kompetenzen auf dieser Liste zustimmen. Welche anderen Fähigkeiten könnten SchülerInnen brauchen?

Teilen Sie Ihre Ideen aus der Kleingruppenarbeit mit der Gruppe. Überlegen Sie sich dann: Von welchen Fähigkeiten wünschen Sie sich, dass Ihre SchülerInnen sie entwickeln? Mit welcher Art von Aufgaben können Sie den Erwerb dieser Fähigkeiten fördern? Besprechen Sie Ihre Ergebnisse in der ganzen Gruppe. Bitten Sie die Lehrer zu erwägen: Welche Fähigkeiten sie sich wünschen, dass ihre SchülerInnen entwickeln? Mit welcher Art von Aufgaben sie den Erwerb dieser Fähigkeiten fördern können?

Zusammenfassung Wählen Sie in der ganzen Gruppe eine Aufgabe (aus der mascil Aufgabensammlung oder aus anderen Quellen) und besprechen Sie, wie sie diese im Klassenzimmer einsetzen könnten. Wahlweise können Sie besprechen, wie sie eine oder mehrere der Beispielaufgaben weiterentwickeln könnten, um mehr Gelegenheit zum Problemlösen zu geben. Probieren Sie die Aufgabe vor dem nächsten Treffen mit einer Klasse aus. Reflektieren Sie, wie effektiv die Aufgabe war; welchen Fortschritt die SchülerInnen in der Entwicklung ihrer Problemlöse-Kompetenzen gemacht haben und teilen Sie diese Erfahrungen mit der Gruppe beim nächsten Treffen. Wählen Sie in der ganzen Gruppe eine Aufgabe (aus der mascil Aufgabensammlung oder aus anderen Quellen) und besprechen Sie, wie sie diese im Klassenzimmer einsetzen könnten. Wahlweise könnte die Gruppe besprechen, wie sie eine oder mehrere der Beispielaufgaben weiterentwickeln könnten, um mehr Gelegenheit zum Problemlösen zu geben. Bitten Sie die Lehrer, die Aufgabe vor dem nächsten Treffen mit einer Klasse auszuprobieren. Sie sollten reflektieren, wie effektiv die Aufgabe war; welchen Fortschritt die SchülerInnen in der Entwicklung ihrer Problemlöse-Kompetenzen gemacht haben und diese Erfahrungen mit der Gruppe beim nächsten Treffen teilen.