Chr. Truöl Solaris-RMB e.V.

Slides:



Advertisements
Ähnliche Präsentationen
Abschlussprüfung an Realschulen
Advertisements

© 2013 Lanzenberger MECHANIK Für die NWA 9er VIEL ERFOLG BEIM ÜBEN!
Vortrag von Stephanie Weirauch Jens Pleger Peter Jancke Frank Wejmelka
ACM ICPC Praktikum Kapitel 4: Sortieren.
Abschlussprüfung an Realschulen
Abschlussprüfung an Realschulen
Die Beschreibung von Bewegungen
Kinetische Energie Elektrische Energie wird zugeführt, um die Geschwindigkeit zu erhöhen (Beschleunigungsarbeit) Kinetische Energie Kinetik=Lehre von der.
Klicke Dich mit der linken Maustaste durch das Übungsprogramm! Ein Übungsprogramm der IGS - Hamm/Sieg © IGS-Hamm/Sieg 2007 Dietmar Schumacher Zeichnerische.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Formeln umstellen Zum Umstellen einer Formel gelten die Rechenregeln von Gleichungen Im Folgenden ein Beispiel am Dreieck:
Strecken und Verschieben einer Linie. In dieser Präsentation wird Ihnen die Möglichkeiten genannt, eine Linie schnellstmöglich zu Verschieben, zu Strecken.
Projekt - Computergrafik
Der waagrechte Wurf.
Lösung der Bewegungsgleichung nach Fehskens - Malewicki
Geometrie Autor: Daniel Orozco IES San Isidoro ( Sevilla )
Letzte Vorbereitungen der Rakete und Start
Chr. Truöl Solaris-RMB e.V.
Effiziente Algorithmen Hartmut Klauck Universität Frankfurt SS
Quantum Computing Hartmut Klauck Universität Frankfurt WS 05/
Der Satz des Pythagoras
Positionierung mit Fuzzy-Regelung
Analyse der Flugbahn eines Skispringers
Aufgaben ohne Koordinatensystem
Jahresrundenprogramm 2009
Krummlinige Bewegungen
Peer Review an der Schule XXX am XXX. Peer Review Team Dateiname Kurz|2||2|
Multivariate Statistische Verfahren
Technisches Experiment
Die Integralrechnung Flächen, Volumen, Weglängen.
Mechanik II Lösungen.
Lösen physikalischer Probleme mit Reibung und / oder mehr als drei Kräften Die folgenden Seiten sind für das selbständige Erarbeiten eines physikalischen.
Vom graphischen Differenzieren
Mechanik II Lösungen.
Computer Algebra für Brüche --- angepasst an Ausbildungszwecke
Elektrizitätslehre Lösungen.
Wärmelehre Lösungen.
LAP IT-Techniker und IT-Informatiker
Mechanik I Lösungen. 3.7 Reibungsarbeit Die zurückgelegte Strecke s,
Anwendung von Apps zur Integralrechnung Untersucht wurden die Programme: -Integral Calculator -Integral, Derivative Calculator.
Löse folgende Gleichung: Inhalt Ende Komplexe Terme durch Substitution lösen.
Sondenbahnen berechnen mit der Zeitschrittmethode
Tutorium Physik 1. Verformung.
Lösung der Bewegungsgleichung nach Fehskens - Malewicki
Ebenen im Raum 1. Koordinatengleichung einer Ebene
Mаtheguru.one Tipps und Lösungen zu Matheaufgaben aus Schulbüchern von der Mittelstufe bis zum Abitur.
Berechnung des ballistischen Fluges mittels der Methode nach Fehskens - Malewicki Neil Jaschinski Christoph Truöl Solaris-RMB e.V.
Satellitengeodäsie Keplerbahnen Torsten Mayer-Gürr
Mаtheguru.one Tipps und Lösungen zu Matheaufgaben aus Schulbüchern von der Mittelstufe bis zum Abitur.
Mechanik II Lösungen.
Geradlinige gleichförmige Bewegung s0s0 s1s1 s2s2 s3s3 s4s4 t0t0 t1t1 t2t2 t3t3 t4t4 0 S 0 m 5 S 50 m 10 S 100 m 15 S 150 m 20 S 200 m  S = 50m  t =
Der Bau eines Homeservers
Wärmelehre Lösungen.
Bisher: Eindimensionale Bewegungen: Gleichförmige Bewegungen
Tutorium Physik 1. Verformung.
Tutorium Physik 1. Arbeit, Energie, Leistung.
Lösen von Sachaufgaben
Einführung in die Differenzialrechnung
Wärmelehre Lösungen.
Tutorium Physik 2. Schwingungen
Elektrizitätslehre Lösungen.
Tutorium Physik 1. Einführung, Umrechnen.
Keyframing und Interpolation
Griffbilder Schub und Zug
Kinetische Energie Elektrische Energie wird zugeführt, um die Geschwindigkeit zu erhöhen (Beschleunigungsarbeit) Kinetische Energie Kinetik=Lehre von der.
Aufstellen und Lösen von Gleichungen
Tutorium der Grund- und Angleichungsvorlesung Physik
Herleitung der Formel zur Berechnung von Winkeln zwischen 2 Vektoren
Tutorium der Grund- und Angleichungsvorlesung Physik. Verformung.
 Präsentation transkript:

Chr. Truöl Solaris-RMB e.V. Berechnung des ballistischen Fluges mittels der Methode nach Fehskens - Malewicki Chr. Truöl Solaris-RMB e.V.

Bewegungsgleichung Gegeben: Gesucht: Gesamtmasse Geschwindigkeit Treibstoffmasse Schub Schubdauer Gesucht: Geschwindigkeit Weg Flugzeit Das Problem ist der Luftwiderstand!

Lösung von Fehskens und Malewicki Aufteilung des Fluges bis Gipfelpunkt in Schub- und Freiflugphase: Geschwindigkeit bei Brennschluss Höhe bei Brennschluss Zeit für Freiflug Freiflugstrecke

Schräger Flug Überlagerung der Bewegung für Höhe z und Weite x Lösung für Höhenflug bis Gipfelpunkt ist bekannt! Gesucht ist 1.) die Fallzeit und die Fallgeschwindigkeit 2.) die Flugweite, Geschwindigkeit und Gesamteinschlaggeschwindigkeit

Fallgeschwindigkeit 1 Fallbewegung wird durch Luftwiderstand gebremst Weg ist bekannt: Gipfelhöhe sd=tb+tc Intergral der Form: mit Weg ist bekannt: Gipfelhöhe sd=sb+sc

Fallgeschwindigkeit 2  Senkrechte Komponente der Bewegung

Falldauer Umformen zur Form mit  Gesamtdauer Falldauer

Waagerechter Flug Schubphase Freiflugphase Gesucht: 1.) Weg xb während Schubphase 2.) Geschwindigkeit am Ende der Schubphase 3.) Weg xc bis Gipfel, Weg xd während des Falls 4.) Geschwindigkeit im Gipfelpunkt 5.) Waagerechte Geschwindigkeit bei Aufschlag

Waagerechte Schubkomponente 1 Geschwindigkeit umstellen zu mit Integral der Form   Umstellen und einsetzen

Waagerechte Schubkomponente 2 Weg  mit Intergral der Form:

Waagerecht ohne Schub Geschwindigkeit umstellen zu Umstellen und einsetzen

Waagerechte Wegkomponente 1 umstellen zu Strecke am Boden bis zum Gipfelpunkt

Komponenten in der Fallphase Waagerechte Geschwindigkeit beim Einschlag Strecke am Boden bis zum Einschlag

Programm Ballalistischer Flug

Schräges Gelände Verkürzung bei Geländeanstieg oder Verlängerung bei Gefälle Iteratives Herantasten an den Aufschlagpunkt Abbruch der Rechnung bei Übereinstimmung (1%)

Praktische Ergebnisse Rakete: Gewicht 50g, Motor B4, Länge ca. 300mm drei Flüge; sie waren kürzer als berechnet (10-15%) Weitere Flüge geplant mit A8 und B6 (kürzere Schubphase) Spezielles Interesse: Beurteilung der Streuung Fazit: Abschätzung der Flugweite erscheint mit den Formeln möglich