Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Forschungsmethoden der Psychologie 2 Tutorium 1. Übersicht Wissensideale Wahrheit Klassische Testtheorie Warhscheinlichkeitstheorie.

Ähnliche Präsentationen


Präsentation zum Thema: "Forschungsmethoden der Psychologie 2 Tutorium 1. Übersicht Wissensideale Wahrheit Klassische Testtheorie Warhscheinlichkeitstheorie."—  Präsentation transkript:

1 Forschungsmethoden der Psychologie 2 Tutorium 1

2 Übersicht Wissensideale Wahrheit Klassische Testtheorie Warhscheinlichkeitstheorie

3 Wissensideale

4 Aristotelisches Wissensideal Galileisches Wissensideal Ideal der beweisenden Wissenschaft; Vorbild Mathematik; wesentlichen Bestimmungsmerkmale; Klärung der Terminologie Erklärung der fraglichen Phänomene; Vorbild Physik; Relationen zwischen verschiedenen Klassen von Gegenständen (z.B. Ursache – Wirkung) Sachlogische Begründungempirische Begründung

5 Wechselseitige Abhängigkeit von aristotelischem und galileischem Wissensideal Beispiel: Friedensforschung Ziel: Reduzierung von Gewalt mit gewaltfreien Mitteln 1.Schritt: Klärung von Terminologie; Was ist Gewalt; Abgrenzung von Aggression (aristotelisches Wissensideal) Daraus 2. Schritt: Präzisierung der Erklärungsaufgabe; empirische Fragestellung (galileisches Wissensideal); z.B.: Wie kann ich verhindern, dass sich Aggression gewaltförmiger Mittel bedient?

6 Wissensideal aristotelisch galileisch deduktiv- nomologisch Induktiv- statistisch intentionalnarrativ Überblick über die verschiedenen Wissensideale Fundament der Erfahrungswissenschaften Naturwissenschaftliche Orientierung geisteswissenschaftliche Orientierung Erfahrungswissenschaften

7 Wahrheit

8 Überblick über die verschiedenen Wahrheitsbegriffe analytischsynthetisch sachlogisch analytisch i.E.S. (formal) logisch synthetisch i.E.S. empirisch A posteriori A priori z.B Modus Ponens Junggesellen sind unverheiratet Webersches Gesetz

9 Sicherstellung der Modellgeltung Analytisch Logik + Terminologie Klassische Testtheorie Der Kalkül (Gulliksen) Ein Modell (Novick) Synthetisch …+ konstruktive Regeln Wahrscheinlichkeitstheorie Der Kalkül (Kolmogoroff) Ein Modell (Lorenzen) Empirisch …+…+ Beobachtung Rasch-Modell Der Kalkül Modellgeltungstests

10 Axiom, das; -s, -e - gültige Wahrheit, die keines Beweises bedarf Kalkül, der; -s, -e - durch ein System von Regeln festgelegte Methode, mit deren Hilfe bestimmte mathematische Probleme systematisch behandelt u. automatisch gelöst werden können Modell, das; -s, -e - (math. Logik): Interpretation eines Axiomensystems, nach der alle Axiome des Systems wahre Aussagen sind. Definitionen

11 Frage in den Erfahrungswissenschaften: Ist der jeweilige Gegenstandsbereich ein Modell für das verwendete Kalkül? Möglichkeiten dies zu prüfen Analytisch i. e. S. Synthetisch i. e. S. empirisch Bsp. Klass. Testtheorie Bsp. Wahrscheinlichkeits- theorie Bsp. Raschmodell Bsp. Klass. Testtheorie

12 Klassische Testtheorie

13 Frage in den Erfahrungswissenschaften: Ist der jeweilige Gegenstandsbereich ein Modell für das verwendete Kalkül? A0: X ot = T ot + F ot A1: E(F ot ) = 0 A2: ρ (T ot, F ot ) = 0 A3: ρ (F ot, F ot ) = 0 A4: ρ (F ot, T ot ) = 0 1. Axiome von Gulliksen

14 Kritik der klassischen Testtheorie Es gibt Verdacht, dass die KTT eine Immunisierung psychologischer Tests gegenüber Kritik leistet. WARUM? Gulliksen definiert True-Score und Messfehler nicht, was für Diagnostiker problematisch ist. A1 garantiert, dass die Testergebnisse keinen systematischen Messfehler enthalten (Hmm…) A2 schließt aus, dass z.B. die Testleistung hochbegabter Probanden überschätzt wird, während minderbegabte durch den Messfehler noch zusätzlich benachteiligt werden usw.

15 Novick (1966): Modellvoraussetzungen 1.Jeder Testung (t) eines Probanden (v) entspricht eine zufällige Variable möglicher Testergebnisse (X vt ) mit endlichem Erwartungswert E(X vt ) und endlicher Varianz 2 (X vt ). Diese nennen wir die Scorevariable. 2.Das Testergebnis (x vt ), welches der Proband erzielt hat, ist eine unabhängige Realisation dieser Scorevariable. 3.Der True-Score des Probanden ( vt ) ist per definitionem gleich dem Erwartungswert der Scorevariable: vt = E(X vt ). Axiome von Gulliksen lassen sich aus diesen Modellvoraussetzungen deduzieren (beweisen) Messfehler der klassischen Testtheorie beschreiben ausschließlich Zufallsfehler

16 Wahrscheinlichkeitstheorie

17 Zufall und Wahrscheinlichkeit Axiome von Kolmogoroff (1933) S:=sicheres Ereignis 3.Zwei Ereignisse A und B schließen sich aus Ableitung der gesamten Wahrscheinlichkeitsrechnung möglich! Aus diesen Axiomen

18 Orientierung des Wahrscheinlichkeitsbegriffs am Zufall (Lorenzen 1974, 1985) Zufälliges Ereignis ist ein Ereignis, das unter Benutzung eines Zufallsgenerators herbeigeführt wurde. Angabe von Konstruktionsprinzipien für Zufallsgeneratoren 1 Diskreter Zufallsgenerator (z.B.: homogener Würfel) Eigenschaften: -Eindeutigkeit, -Ununterscheidbarkeit der Elementarereignisse, -Wiederholbarkeit. 2 Kontinuierliche Zufallsgeneratoren (z.B.: Glücksrad) Problem: Die Axiome von Kolmogoroff liefern noch kein Modell der Wahrscheinlichkeitsbegriffs

19 Wahrscheinlichkeitsbegriff als Quantifizierung der Kontingenz zufälliger Ereignisse zwischen den Polen der Unmöglichkeit und Sicherheit Wegen Prinzip Wiederholbarkeit: Unmögliche Ereignisse (U) treten bei noch so langen Versuchsreihen nie ein; sichere Ereignisse (S) treten immer ein Wahrscheinlichkeit beschreibbar durch relative Häufigkeit Wegen Prinzip Eindeutigkeit: bzw. wechselseitiger Ausschluss der Einzelereignisse: Wegen Ununterscheidbarkeit:

20 Wahrscheinlichkeit ist somit die relative Häufigkeit zufälliger Ereignisse auf Dauer Gesetz der großen Zahl: relative Häufigkeit strebt mit n gegen die so definierte Wahrscheinlichkeit

21 FRAGEN


Herunterladen ppt "Forschungsmethoden der Psychologie 2 Tutorium 1. Übersicht Wissensideale Wahrheit Klassische Testtheorie Warhscheinlichkeitstheorie."

Ähnliche Präsentationen


Google-Anzeigen