Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Der Binomialtest Man habe einen wahren Anteil P. Kann man aufgrund von p sagen, daß in der Population tatsächlich der Anteil P zugrunde liegt? [Beispiele]

Ähnliche Präsentationen


Präsentation zum Thema: "Der Binomialtest Man habe einen wahren Anteil P. Kann man aufgrund von p sagen, daß in der Population tatsächlich der Anteil P zugrunde liegt? [Beispiele]"—  Präsentation transkript:

1 Der Binomialtest Man habe einen wahren Anteil P. Kann man aufgrund von p sagen, daß in der Population tatsächlich der Anteil P zugrunde liegt? [Beispiele] In einer Stichprobe der Größe n beobachte man einen Anteil: Man testet einfach n A in der Binomialverteilung mit den Parametern n und P (=Binomialtest)

2 Die Stichprobenverteilung von Anteilen Man habe einen wahren Anteil P. [Beispiele] Gilt Es gibt die Sicherheit der Schätzung von Anteilen, abhängig von der Stichprobengröße n an (Stichprobenverteilung von Anteilen) so existiert für P das Konfidenzintervall mit Die Verteilung von Anteilen ist analog der Verteilung von Mittelwerten

3 Stichprobenverteilung der Differenzen von Anteilen [Beispiele] Gilt so sind Differenzen von Anteilen p = p 1 -p 2 normalverteilt mit Die Verteilung der Differenzen von Anteilen ist analog der Verteilung der Differenzen von Mittelwerten Man prüft die H0: P 1 =P 2 über die normalverteilte Prüfgröße

4 Chi-Quadrat Tests für Häufigkeiten 1.Zur Prüfung von Häufigkeitsunterschieden 2.Zur Prüfung der Unabhängigkeit zweier nominalskalierter Variablen 3.Zur Prüfung der Übereinstimmung einer empirischen mit einer theoretischen Verteilung

5 Chi - Quadrat Die generelle Form des Chi – Quadrat für Häufigkeiten ist: mit: Dieses Schema wird flexibel auf die jeweilige Fragestellung angewandt. Die Frage ist, nach welchem Kriterium sich die erwarteten Häufigkeiten ergeben ! Das einache 2 hat k-1 Freiheitsgrade, die zugehörige Wahrscheinlichkeitsverteilung ist die 2 Verteilung.

6 Chi – Quadrat Test auf Unabhängigkeit Man hat eine l k Kreuztabelle: Merkmal B +- +o 11 o 12 B+ -o 21 o 22 B- A+ A- Merkmal A Erwartete Häufigkeit e ij : Ferner gilt:

7 Chi – Quadrat Test: Verteilungsanpassung Sind die Abweichungen von empirischer und theoretischer Verteilung nur zufällig oder systematisch?

8 Chi – Quadrat Test: Verteilungsanpassung 1.Die erwarteten relativen Häufigkeiten berechnet man aus der Differenz der Werte der Verteilungsfunktion für die exakten Intervallgrenzen 2.Die erwarteten Häufigkeiten ergeben sich durch Multiplikation mit der Anzahl der Beobachtungen N. 3.Test hat k-1 Freiheitsgrade 4.Keine Erwartungshäufigkeit soll kleiner als 5 sein [Tafelbeispiel]

9 Chi – Quadrat Test: Verteilungsanpassung [Tafelbeispiel] beobachtet h(x)h(x) x Vergleich: h(x)h(x) x erwartet als Normalverteilung h(x)h(x) x


Herunterladen ppt "Der Binomialtest Man habe einen wahren Anteil P. Kann man aufgrund von p sagen, daß in der Population tatsächlich der Anteil P zugrunde liegt? [Beispiele]"

Ähnliche Präsentationen


Google-Anzeigen