Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Entscheidungstheorien

Ähnliche Präsentationen


Präsentation zum Thema: "Entscheidungstheorien"—  Präsentation transkript:

1 Entscheidungstheorien
Christian Kaernbach

2 Gliederung Der Einfluß von Kosten und Nutzen auf die Entscheidung
Darstellung von Entscheidungsdaten als Tabelle / als Graphik Die Eigenschaften der ”Receiver Operating Characteristics” klassisches Modell: Gaußsches Modell mit gleicher Varianz  Asymmetrie der Daten Rettungsversuche für das Gaußsche Modell  Schwellenmodelle Poissonmodell  Modellvergleich Anwendung: Sprache in Rauschen bei Leichtgläubigen

3 Statistische Entscheidungstheorie Statistical Decision Theory, SDT
Beispiel: Entscheidungsverhalten an der Wahrnehmungsschwelle, Signalentdeckungstheorie, Signal Detection Theory, SDT sensorische Komponente (Urteilsbasis) strategische Komponente (Kosten/Nutzen) zwei Reizkonstellationen Rauschen (kein Signal), Signal plus Rauschen zwei Antwortmöglichkeiten Ja (Signal war vorhanden), Nein (kein Signal)

4 Tabellarische Datendarstellung
Ja Nein Signal + Rauschen Treffer Auslasser falscher korrekte Rauschen Alarm Zurückweisung

5 Motivation Nach Golde drängt, am Golde hängt doch alles (Goethe, Faust) Laborexperimente: Manipulation mittels Kosten/Nutzen-Matrix (payoff matrix) Ja Nein S+R +1 € -1 € R -1 € +1 €

6 Graphische Datendarstellung
Trefferwahrscheinlichkeit (pT) als Funktion der Falschalarmwahrscheinlichkeit (pFA). Wo ist der Datenpunkt, wenn die Versuchsperson alles richtig macht? alles falsch macht? immer mit „Ja“ antwortet? immer „Nein“ antwortet? per Münzwurf entscheidet? im „Normalfall“? Wohin wandert der Datenpunkt, wenn Auslasser stärker bestraft werden?

7 Receiver Operating Characteristics ROC
Daten: Empiriepraktikum Universität Leipzig WS 96/97

8 Drehsymmetrie des ROC (anti-kooperatives Verhalten)

9 Drehsymmetrie des ROC (anti-kooperatives Verhalten)

10 Der ROC ist konvex AROC  BROC  ABROC

11 Geraden gleichen Payoffs
Payoff-Matrix Ja Nein S+R –40 R – mittlerer Payoff: Pay = 0,5 · (10 · pT – 40 · (1–pT)) ,5 · (–5 · pFA + 10 · (1–pFA))

12 Geraden gleichen Payoffs
0 +5 5 10 15 20 +10 Payoff-Matrix Ja Nein S+R –40 R – mittlerer Payoff: Pay = 0,5 · (10 · pT – 40 · (1–pT)) ,5 · (–5 · pFA + 10 · (1–pFA))

13 Geraden gleichen Payoffs
0 +5 5 10 15 20 +10 Payoff-Matrix Ja Nein S+R mT mA R mFA mKZ mittlerer Payoff: Pay = 0,5 · (mT · pT + mA · (1–pT)) ,5 · (mFA · pFA+ mKZ · (1–pFA)) verhaltensbestimmend: die Steigung (mKZ – mFA) / (mT – mA)

14 Ein Würfelspiel Signal: Münzwurf (Kopf: 2, Zahl 0)
Rauschen: Summe zweier Würfel (2...12) Aufgabe: Erraten, ob Kopf gefallen ist, gegeben ein bestimmtes Gesamtergebnis

15 Wahrscheinlichkeitsdichten S+R / R.
ROC aus Wahrscheinlichkeitsdichten auf der „Entscheidungsachse“ (decision axis, internal response, ...) R S+R Je weiter rechts die innere Antwort auf der Entscheidungsachse, desto wahrscheinlicher ist das Signal. Die Versuchsperson sagt „Ja“, wenn der Wert auf der Entscheidungsachse ein bestimmtes Kriterium k überschreitet. Rückt k ein infinitisemales Stück nach rechts, dann werden sowohl pFA als auch pT kleiner. Das Verhältnis pT / pFA ist die Steigung des ROC und läßt sich berechnen als Bruch der Wahrscheinlichkeitsdichten S+R / R.

16 Welche Verteilung? Normalverteilung kumulative Normalverteilung, KNV

17 Gaußsches Modell mit gleicher Varianz
S+R = N(0,1) S+R = N(d‘,1) 2 Parameter: Sensitivität d‘ (Kurve) Kriterium k (Punkt) k‘ = KNV1(FA) d‘ = KNV1(T)  KNV-1(FA)

18 Gaußsches Modell: Symmetrie
S+R = N(0,1) S+R = N(d‘,1) 2 Parameter: Sensitivität d‘ (Kurve) Kriterium k (Punkt) k‘ = KNV1(FA) d‘ = KNV1(T)  KNV-1(FA)

19 Asymmetrie realer Daten
  ROC nach Gauß (gl. Varianz) zu symmetrisch  

20 Gaußsches Modell mit ungleicher Varianz
S+R = N(0,1) S+R = N(d‘,) 3 Parameter: Sensitivität d‘ (Kurve) Streuung S+R  (Kurve) Kriterium k (Punkt)   ROC nicht konvex  

21 Hochschwellenmodell (Blackwell, 1953)
S+R = {1, 0} S+R = {1, } 2 Parameter: p(D|S+R) =  (Kurve) Kriterium (Punkt)   unrealistisch: Falschalarmrate = 0  

22 Niedrigschwellenmodell (Luce, 1963)
S+R = {1, } S+R = {1, } 3 Parameter: p(D|R) =  (Schar) p(D|S+R) =  (Kurve) Kriterium (Punkt)   perfekte Leistung unmöglich  

23 Hoch/Niedrigschwellenmodell (Krantz, 1969)
S+R = {1, , 0} S+R = {1, , } 4 Parameter: p(D|R) =  (Schar) p(D|S+R) =  (Kurve) p(D*|S+R) =  (Kurve) Kriterium (Punkt)   zuviele Parameter  

24 Kontinuierliche und diskrete Modelle
Kann man ROCs aus kontinuierlichen Verteilungen (z.B. Gauß) von ROCs aus Modellen mit wenigen diskreten Zuständen (Schwellenmodelle: Blackwell, Luce, Krantz) an der „Eckigkeit“ unterscheiden? ROCs aus Rating-Daten sind „rund“: VP gibt Sicherheit für „Ja“ auf kontinuierlicher Skala an (Bleistiftstrich) VL setzt post-hoc verschiedene Schwellen für „Ja“ Krantz argumentiert gegen „runde Rating-ROCs“ gegeben zwei Zustände, D und D. verschmiertes Antwortverhalten aus Skala, Gaußverteilungen für D und D. > runder ROC „Nein“ „Ja“

25 Das Poissonmodell (Egan, 1975)
3 Parameter: µ(R) (Schar) µ(S+R) (Kurve) Kriterium (Punkt)   va bene  

26 Übergänge Poisson µ(R) = 0  Hochschwellenmodell
Poisson µ(R) < .2  Hoch/Niedrigschwellenmodell Poisson µ(R)    Gaußsches Modell mit gleicher Varianz

27 Modellvergleich Sparsamkeit Kompatibilität Parameter
Schar Kurve Punkt Probleme Gauß mit gleicher Varianz nur symmetrische Daten mit ungleicher Varianz ROC nicht konvex Hochschwellen FA-Rate = 0 Niedrigschwellen erreicht nicht „perfekt“ Hoch/Niedrigschw zu viele Parameter Poisson 

28 Sprache in Rauschen bei Leichtgläubigen
Diplomarbeiten von Gerit Haas und Ulrike Jury, Universität Graz, 2007 245 Versuchspersonen füllen Online-Fragebogen aus Persönlichkeitsmerkmal “Magical Ideation” (MI) erheben mit 30 Items wie Ich vollführe ab und zu kleine Rituale, um ungünstige Ereignisse abzuwenden. Es gibt Leute, bei denen ich spüre, wenn sie an mich denken. Wenn bestimmte Leute mich ansehen oder mich berühren, habe ich manchmal das Gefühl, Energie zu gewinnen oder zu verlieren. Ich glaube, ich könnte lernen, die Gedanken Anderer zu lesen, wenn ich nur wollte. Die Regierungen halten Informationen über UFOs zurück. ... Extremgruppenvergleich 8 Personen mit niedrigem MI-Wert (1,25  1,3) 9 Personen mit hohem MI-Wert (22  2,4)

29 Sprache in Rauschen bei Leichtgläubigen
Semantisches Priming Regelentdeckung in einem Computerspiel Erkennen von Objekten in visuellen Rauschbildern Erkennen von Wörtern in Rauschen behaviorale Untersuchung: 100 Durchgänge, davon 60 mal nur Rauschen 20 mal Rauschen plus sehr leises Wort 20 mal Rauschen plus leises Wort Aufgabe: War da ein Wort? Vierstufiges Rating sicher ja eher ja eher nein sicher nein bildgebendes Verfahren (NIRS) zu Wörtern in Rauschen

30 Sprache in Rauschen bei Leichtgläubigen
Erkennen von Wörtern in Rauschen Asymmetrie: Hinweis auf Poissonverteilung MI-hoch und MI-niedrig produzieren gleiche ROC-Kurve Position der Punkte auf ROC-Kurve unterscheidet sich deutlich basale Wahrnehmungsprozesse sind identisch (liefern gleiche Information) Kriterien beim Auswerten dieser Information sind unterschiedlich

31 Hausaufgaben Es werden 200 Versuche gemacht, davon 100 mit S+R, 100 mit R. Die VP macht 16 falsche Alarme und 50 Treffer. Wie groß ist k? Wie groß ist d‘? Wie viele Treffer und falsche Alarme würde die VP an dem Punkt machen, der an der Gegendiagonale gespiegelt ist? Wie groß ist d‘ für diesen Punkt? Wie groß muß k sein, damit die VP diesen Punkt erzeugt? Und weil‘s so schön war: Eine andere VP macht bei der gleichen Lautstärke 16 falsche Alarme und 84 Treffer. Gleiche Fragen wie oben...


Herunterladen ppt "Entscheidungstheorien"

Ähnliche Präsentationen


Google-Anzeigen