Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

1 Vorlesung am 27.11.2006 Wahrscheinlichkeiten und ihre Berechnung Vorlesung am 4.12.2006: 1. Fortsetzung der Überlegungen zu Wahrscheinlichkeiten und.

Ähnliche Präsentationen


Präsentation zum Thema: "1 Vorlesung am 27.11.2006 Wahrscheinlichkeiten und ihre Berechnung Vorlesung am 4.12.2006: 1. Fortsetzung der Überlegungen zu Wahrscheinlichkeiten und."—  Präsentation transkript:

1 1 Vorlesung am Wahrscheinlichkeiten und ihre Berechnung Vorlesung am : 1. Fortsetzung der Überlegungen zu Wahrscheinlichkeiten und ihrer Berechnung 2. Mehrstufige Zufallsexperimente und ihre Baum- diagramme ۩ ۩ ۩ ۩

2 2 Zur Erinnerung: Vorgegeben ist ein zufälliger Versuch. Wir präzisieren die Bedingungen so, dass die Vorschrift eindeutig festgelegt ist und damit der Versuch beliebig wiederholbar wird. Wie ist ein geeigneter Ansatz für die Berechnung von Eintrittschancen (= Wahrscheinlichkeiten) zu finden? Eine allgemeingültige Antwort gibt es nicht! Für den jeweils vorgelegten, konkreten zufälligen Versuch muss überlegt werden, wie die Eintrittschancen zu berechnen sind.

3 3 Beispiel: In einen Kreis mit dem Radius r soll auf gut Glück eine Sehne eingezeichnet werden. Wie groß ist die Wahrscheinlichkeit, dass die eingezeichnete Sehne länger ist als die Seitenlänge desjenigen gleichseitigen Dreiecks, das dem Kreis einbeschrieben werden kann? 1. Wir versuchten, das Problem zu verstehen: In den gegebenen Kreis lässt sich ein gleichseitiges Dreieck einzeichnen (einbeschreiben): Seitenlänge solch eines Dreiecks berechnen – in Abhängigkeit vom Kreisradius r : Unsere Aufgabe ist es, willkürlich eine Sehne einzuzeichnen und dann die Sehne mit der Dreiecksseite zu vergleichen.

4 4 Unser 1. Vorschlag zum Präzisieren der Aufgabe: Einzeichnen einer Sehne: 1. Punkt A auf dem Kreis auswählen 2. Von diesem Punkt aus die Sehne zeichnen. A Beispiel-Sehne = Menge aller Sehnen, die auf diese Weise eingezeichnet werden können Ereignis E = Menge aller Sehnen aus, die länger als sind. P(E) = ? Wir benutzen das Modell der geometrischen Wahrscheinlichkeit.

5 5 Geometrische Wahrscheinlichkeit: Zufälliges Experiment, das mit geometrischen Mitteln beschrieben werden kann: ist als geometrische Figur auffassbar. Die möglichen Versuchsausgängen haben alle die gleiche Eintrittschance: kein Ausgang ist gegenüber einem anderen bevorrechtet. Das interessierende Ereignis E lässt sich als Teil(-Figur) der Figur auffassen. Berechnung der geometrischen Wahrscheinlichkeit von E: P(E) = Beispielsehne, die länger als die Dreiecksseite ist. P(E) = P( Menge aller Sehnen, die als sind ) = Verwendete Maßzahl: Winkel in Grad

6 6 Achtung: Unsere Interpretation der Aufgabe (= des zufälligen Versuchs) war nur eine von vielen möglichen! Beispiel für eine andere mögliche Interpretation: Zufälliges Einzeichnen einer Sehne bedeutet für uns nun Wir vereinbaren eine Richtung, in der die Sehnen eingezeichnet werden sollen, und zeichnen dann nur Sehnen in dieser Richtung ein. Wir legen als Sehnenrichtung den Neigungswinkel gegen den waagerechten Durchmesser fest. Die für E günstigen Sehnen liegen dann im rot markierten Bereich. Die für E günstigen Sehnen lassen sich durch den blauen Ausschnitt des waagerechten Durchmessers beschreiben.

7 7 Berechnung der geometrischen Wahrscheinlichkeit für diese Festlegung des zufälligen Versuchs: P(E) = = 1 : 2 (Beweis: In der vergangene Vorlesung als einzelnes Blatt ausgegeben!) Achtung: Unterschiedliche Wahrscheinlichkeiten für einen zufälligen Versuch??? Nein! Wir haben es bei den beiden Interpretationen mit unterschiedlichen zufälligen Versuchen zu tun. Die berechneten Wahrscheinlichkeiten sind an die jeweilige Versuchsfestlegung gebunden – sie gelten nur in diesem Kontext!

8 8 Grundsätzliches Problem: Vorgegeben ist ein zufälliger Versuch. Wir präzisieren die Bedingungen so, dass die Vorschrift eindeutig festgelegt ist und damit der Versuch beliebig wiederholbar wird. Wie ist dann ein geeigneter Ansatz für die Berechnung von Eintrittschancen (= Wahrscheinlichkeiten) zu finden? Eine allgemeingültige Antwort gibt es nicht! Für den jeweils vorgelegten konkreten zufälligen Versuch muss überlegt werden, wie die Eintrittschancen zu berechnen sind. Vorschläge für mögliches Herangehen (mögliche Fragen): Passt das Laplace-Modell? Könnte man das Modell der geometrischen Wahrscheinlichkeit benutzen? Sollte man anstelle von Wahrscheinlichkeiten relative Eintrittshäufigkeiten berechnen? ( empirisches Gesetz der großen Zahlen!)

9 9 Alle Vorschläge für Wahrscheinlichkeitsberechnungen müssen gewisse grundlegende Eigenschaften erfüllen! axiomatische Festlegung des Wahrscheinlichkeitsbegriffs Andrei Nikolajewitsch Kolmogorov ( ), Bedeutender russischer Wahrscheinlichkeitstheoretiker: Vater der modernen Wahr- scheinlichkeitsrechnung 1933 Axiomensystem für die Wahrscheinlichkeit

10 10 Axoimensystem von A. N. Kolmogorov: Gegeben: Zufälliges Experiment mit dem Ergebnisraum. Eine Funktion P, die jedem Ereignis E eine reelle Zahl P(E) zuordnet, heißt Wahrscheinlichkeitsfunktion (Wahrscheinlichkeitsmaß) auf genau dann, wenn sie folgende Eigenschaften besitzt: (1)P(E) 0 für jedes Ereignis E (Nichtnegativität) (2) P( ) = 1 (Normierung) (3)P(E 1 E 2 ) = P(E 1 ) + P(E 2 ), falls E 1 E 2 = Ø (Additivität) Die Zahl P(E) heißt dann Wahrscheinlichkeit des Ereignisses E im gegebenen zufälligen Versuch.

11 11 Die Modelle der Laplace-Wahrscheinlichkeit, der geometrischen Wahrscheinlichkeit, der Eintrittshäufigkeit führen auf Wahrscheinlichkeitsmaße! Laplace-Wahrscheinlichkeit, geometrische Wahrscheinlichkeit relative Häufigkeit sind Wahrscheinlichkeitsmaße.

12 Beispiel: Wir wollen mit folgendem, etwas ungewöhnlichem Würfel würfeln: Wie groß ist die Chance, dass mit diesem Würfel gewürfelt wird? = { ۩,, } ; kein Laplace-Modell! P( ۩ ) = und P( ) = P( ) = ۩ ۩ ۩ ۩ ۩

13 13 = { ۩,, } ; kein Laplace-Modell! P( ۩ ) = und P( ) = P( ) = Aber: Mit dieser Festlegung für P ist eine Wahrscheinlichkeit(sfunktion) für die Menge der Versuchsausgänge festgelegt. P( ۩ ) + P( ) + P( ) = + + = 1 = P( { ۩,, } ) = P( ) Eigenschaft (2) der Normierung gilt, denn:

14 14 Eigenschaft (1) der Nichtnegativität gilt, denn: Ist das Ereignis E das unmögliche Ereignis. P(E) = P( ) = 0 (zwingend-sinnvolle Festlegung für das Nichtrealisierbare!) Sei das Ereignis E eine nichtleere Teilmenge von setzt sich aus Elementarereignissen aus zusammen. P(E)

15 15 Eigenschaft (3) der Additivität gilt, denn: Seien E 1 und E 2 Ereignisse mit setzt sich aus genau denjenigen Elementar- ereignissen zusammen, die zu E 1 oder zu E 2 gehören. E1E1 E2E2 ۩ = { ۩,, } = Zum Beispiel:

16 16 Rechnen mit Wahrscheinlichkeiten Es sei P eine Wahrscheinlichkeitsfunktion zu einem gegebenen zufälligen Versuch mit dem Ergebnisraum. Zusätzlich zu den Kolmogorov-Axiomen gelten dann für die Funktion P stets weitere Eigenschaften: Monotonie-Regel: Ereignis E Ereignis F P(E) P(F) Regel für Gegenwahrscheinlichkeiten: P( ) = 1 – P(E) für jedes Ereignis E Additionsregel: P( ) = P(A) + P(B) – P( ) für alle Ereignisse A und B.

17 17 Beweis der Regel für die Gegenwahrscheinlichkeit: Wir benutzen: P( ) =1 (= Normierungsaxiom), = und Ø für jedes Ereignis A sowie das Additionsaxiom: 1 = P( ) = P( ) = P( A ) + P( ) P( ) = 1 – P( A ) Speziell: P(Ø ) = 0, denn: Ø und Ø = Ø P( ) = P( ) + P(Ø) 1 = 1 + P(Ø) P(Ø) = 0

18 Beweis für die Additionsregel: B überlappender Teil (2x vorhanden): A B A A = (A – (A B) ) (A B) B = (B – (B A) ) ( A B) A B = (A – (A B) ) (A B) (B – (B A) ) P(A B) = P(A ) + [ P(B) - P(A B) ] (gemäß Additionsaxiom und Regel für die Gegenwahrscheinlichkeit)

19 19 Beweis für die Monotonie-Regel: A B B = (B – A) A P(B) = P(B - A) + P(A) und wegen P(B – A ) 0 (Nichtnegativität) P(B) P(A)

20 20 Wichtige Eigenschaft für zufällige Versuche mit endlich vielen Elementarereignissen: 1 = P( ) = Die Gesamtwahrscheinlichkeit setzt sich aus allen Elementarwahrscheinlichkeiten zusammen. Für jedes Ereignis E gilt: Die Wahrscheinlichkeit von E setzt sich aus den Elementar- wahrscheinlichkeiten für diejenigen Elementarereignbiss zusammen, die zu E gehören.

21 21 Anton, Peter, Jenny, Maria, Anja und Olaf wollen sich an den Tisch mit seinen 6 Plätzen setzen. Präzisierung des Experiments: Wir haben die 6 Plätze durchnummeriert. Die Kinder setzen sich zufällig an den Tisch. heißt für uns: Peter und Maria wählen ihre beiden Plätze beliebig aus den 6 Plätzen aus. (Wie die anderen 4 Kinder sich auf die restlichen 4 Plätze setzen ist für unser Problem bedeutungslos.) Beispiel: 6 Personen setzen sich zufällig um einen runden Tisch. Wie groß ist die Wahrscheinlichkeit, dass zufällig Peter neben Maria zu sitzen kommt?

22 Versuchsausgänge: alle möglichen Stuhlkombinationen, auf denen Peter und Maria Platz genommen haben. = { {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6} } Ereignis E : Peter und Maria haben benachbarte Plätze E = {{1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,1}} Ansatz für die gesuchte Wahrscheinlichkeit: Alle Versuchsausgänge sind gleichberechtigt. Verhältnisansatz : P(E) = Alle möglichen Zweier-Mengen von Sitzkombinationen Laplace-Modell !

23 23 Die Chance, dass Peter und Maria zufällig nebeneinander sitzen, ist für unsere Interpretation des Problems 40% (Wahrscheinlichkeit 0,4). Es gibt aber auch andere Möglichkeiten, das Problem zu verstehen – und entsprechend zu modellieren (in die Sprache der Stochastik zu übertragen)! Haben Sie Ideen dafür?

24 Wir wählen nun z. B. folgende Interpretation des Versuchs: Versuchsbedingungen: Die Kinder setzen sich zufällig an den Tisch. heißt für uns: Die Plätze am Tisch sind nicht mehr nummeriert. Peter und Maria wählen ihre beiden Plätze beliebig am Tisch aus. (Wie die anderen 4 Kinder sich auf die restlichen 4 Plätze setzen ist für unser Problem bedeutungslos.) Experiment: Peter und Maria setzen sich beliebig an den Tisch und wir zählen, bei Peter beginnend und im Uhrzeigersinn, ab, wie viele Kinder zwischen Peter und Maria sitzen. Elementarereignisse: 0, 1, 2 Ereignis A : Abstand 0 Ereignis B: Abstand 1 Ereignis C: Abstand 2

25 25 Achtung: Ereignis A: Peter und Maria sitzen nebeneinander (d.h. 0 Kinder zwischen ihnen) ist gleichbedeutend damit, dass 4 Kinder zwischen ihnen sitzen. Ereignis B: Zwischen Peter und Maria sitzt 1 Kind ist gleichbedeutend damit, dass 3 Kinder zwischen ihnen sitzen. Ereignis C: Zwischen Peter und Maria sitzen 2 Kinder

26 26 = { {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6} } Ereignis A = { {1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {1,6} } Ereignis B = { {1,3}, {2,4}, {3,5}, {4,6}, {2,6}, {1,5} } Ereignis C = { {1,4}, {2,5}, {3,6} } Ereignis A : Abstand 0 Ereignis B: Abstand 1 Ereignis C: Abstand 2 P( Abstand 0 ) = = P( Abstand 1 ) P( Abstand 2 ) Peter und Maria sitzen neben- einander Bei genauem Hinsehen:

27 27 Unser zweiter Betrachtungsvorschlag lässt sich also folgendermaßen charakterisieren: = { 0, 1, 2 } Wir haben es bei diesem Vorschlag also nicht mit einem Laplace-Modell zu tun! P Modell 2 ( Peter und Maria sitzen nebeneinander ) =

28 28 Noch eine weitere mögliche Versuchsinterpretation: Peter und Maria setzen sich beliebig an den Tisch und wir interessieren uns nur dafür, ob die zwei nebeneinander sitzen oder nicht. Achtung: Diese Versuchsinterpretation führt ebenfalls nicht auf ein Laplace-Modell ! = {ja, nein} P( {ja} ) = P( Abstand 0) = P( {nein} ) = P( Abstand 1 oder 2) = (Genau hinschauen: Hinter dem Ausgang nein verbergen sich mehr Möglichkeiten als hinter ja.)

29 29 P Modell 3 (ja) = P( Peter und Maria sitzen nebeneinander ) = P(0 Plätze zwischen ihnen) = Achtung: 3 verschiedne Modellvorschläge, die aber alle 3 für die gesuchte Wahrscheinlichkeit P( Peter und Maria sitzen nebeneinander ) denselben Wert liefern. Ursache: Wir führen in allen 3 Fällen auf denselben Grundansatz zurück.

30 30 Beispiel: Was ist gerecht? Zwei gleichstarke Mannschaften bestreiten einen Wettkampf, der aus einzelnen Runden besteht. Im Fall eines Rundengewinns bekommt die Siegermannschaft einen Punkt, die Verlierermannschaft geht leer aus. (Gleichstand in einer Runde gibt es nicht.) Die Mannschaft, die als erste 3 Punkte zusammenhat, ist Gesamtsieger und bekommt das Preisgeld. Die Bedingungen des Experiments Wettkampf zwischen Mannschaft und Mannschaft B sind damit festgelegt! Alles wäre in Ordnung, wenn nicht der Wettkampf wegen eines Wolkenbruchs vorzeitig beim Spielstand 2:1 für die Mannschaft A hätte abgebrochen werden müssen. Wie ist nun der Preis möglichst gerecht unter den beiden Mannschaften A und B aufzuteilen?

31 31 Aufteilung des Preisgeldes im Verhältnis 2:1 Mannschaft A bekommt des Preisgeldes, Mannschaft B bekommt des Preisgeldes. Einverstanden? Mannschaft A war ja eigentlich schon viel näher am Gesamt- sieg als Mannschaft B … Es wäre gerechter, die zukünftigen Chancen zu berücksichtigen!

32 32 Blick in die Zukunft: Aktueller Stand: A hat 2 Runden gewonnen, B eine Runde Weiterer möglicher Spielverlauf: verbleibende Spiele bis zum Wettkampf-Ende A siegt B siegt A siegt B siegt 1. noch ausstehendes Spiel 2. ausstehendes Spiel Stand: 2:1 für A

33 33 Eintrittschancen? Schritt für Schritt A siegt B siegt A siegt B siegt 1. noch ausstehendes Spiel 2. ausstehendes Spiel Stand: 2:1 für A und insgesamt – Produktregel!

34 A siegt B siegt A siegt B siegt 1. noch ausstehendes Spiel 2. ausstehendes Spiel Stand: 2:1 für A Ereignis A gewinnt den Wettkampf = { A gewinnt das 1. ausstehende Spiel, B gewinnt das erste und A gewinnt das 2. ausstehende Spiel } P( A gewinnt den Wettkampf) = P(B gewinnt den Wettkampf) = Wahrscheinlichkeit des Gegenereignisses

35 35 Gerechte Verteilung des Preisgeldes? Unsere Antwort: des Preisgeldes an Mannschaft A; des Preisgeldes an Mannschaft B. Welches stochastische Modell verbirgt sich hinter diesen Überlegungen? mehrstufige Zufallsexperimente

36 36 n-stufiges Zufallsexperiment: Das Experiment gliedert sich in n Teilexperimente, die man sich als Kette hintereinander angeordnet vorstellen kann. Jeder Ausgang (=Elementarereignis) des n-stufigen Experiments ist eine Kette von n Teilausgängen: = ( 1, 2, …, n ), wobei gilt: i = Ergebnis des n-ten Teilexperiments (i=1,…,n). Achtung: Die Teilexperimente eines mehrstufigen Zufallsexperiments müssen nicht sämtlich identisch sein!

37 n-stufiges Zufallsexperiment Abfolge der Teilexperimente T 1, …, T n Veranschaulichung durch einen Baum: T 1 T 2... T n... mögliches Elementarereignis des n-stufiges Experiments 1 2 n-1 n

38 Jedem Ausgang des n-stufigen Experiments entspricht ein Pfad im Baum. Pfad-Multiplikationsregel: Beispiel-Experiment: 3-maliger Münzwurf und Notieren der 3 oben liegenden Münzseiten = { ( w,w,w,), (w,w,z), (w,z,w), (w,z,z), (z,w,w), (z,w,z), (z,z,w), (z,z,z) } Baum mit eingetragenen Pfadwahrscheinlichkeiten

39 39 Wie groß ist die Wahrscheinlichkeit, dass erstmalig beim 3. Wurf Zahl oben liegt? Ereignis E = { (W,W,Z) } P(E) = Wie groß ist die Wahrscheinlichkeit, dass bei den 3 Würfen nur 1x Zahl auftritt? Ereignis F = { (Z,W,W), (W,Z,W), (W,W,Z) } P(F) =

40 40

41 Beispiel Ziehen ohne Zurücklegen 9 Kinder stehen auf dem Schulhof – 5 Jungen und 4 Mädchen. Als Tino dazukommt, atmen alle auf: Jetzt gibt es 2 Völkerball-Mannschaften mit je 5 Kindern. Tino stellt die Mannschaften so zusammen: auf gut Glück wählt er die vier Kinder aus, die mit ihm in der gleichen Mannschaft spielen sollen. Die übrig gebliebenen fünf Kinder spielen dann in der anderen Mannschaft.

42 Stochastisches Modell: 4-stufiges Zufallsexperiment Ausgänge: (1. gewähltes Kind, 2. gewähltes Kind, 3. gewähltes Kind, 4. gewähltes Kind) Dabei ist jeweils nur die Information Junge oder Mädchen interessant (möglich). Elementarereignisse: 4-er-Ketten mit den Einträgen J(unge) oder M(ädchen) Abzweigung nach links: Tino wählt in diesem Schritt einen Jungen; Abzweigung nach rechts: Tino wählt in diesem Schritt ein Mädchen.

43 43 Wie groß ist die Wahrscheinlichkeit, dass Tinos Mannschaft aus 2 Jungen und 3 Mädchen besteht? Ereignis E : Tino wählt 1 Jungen und 3 Mädchen aus E = Menge aller möglichen Auswahlen von 1 Jungen und 3 Mädchen Nach der Auswahl sind noch 4 Jungen und 1 Mädchen übrig. Im Baum ist nach der Konstellation zu suchen.

44 44

45 45 Berechnung der Wahrscheinlichkeit P(E) : P(E) = = = 0,15673

46 46 Besonderheit dieses 4-stufigen Experiments: Die 4 Teilexperimente sind 4 unterschiedliche Zufallsversuche! 1. Teilexperiment: Auswahl des ersten Kindes aus einer Gruppe von 5 Jungen und 4 Mädchen 2. Teilexperiment: Auswahl des zweiten Kindes aus der Gruppe der verbliebenen 8 Kinder 3. Teilexperiment: Auswahl des dritten Kindes aus der Gruppe der verbliebenen 7 Kinder 4. Teilexperiment: Auswahl des dritten Kindes aus der Gruppe der verbliebenen 6 Kinder Die Teilexperimente sind voneinander abhängig: Die Bedingungen jedes Teilexperiments hängen davon ab, wie das Vorgängerexperiment ausgegangen ist!

47 47 Wir benötigen einen Begriff, der die Abhängigkeit in der Sprache der Stochastik modelliert. bedingte Wahrscheinlichkeiten

48 48 Wichtige Gedanken der heutigen Vorlesung: Wahrscheinlichkeitsberechung mit konkreten Ansätzen für die Wahrscheinlichkeit Charakteristische Eigenschaften für Wahrscheinlichkeiten: Nichtnegativität, Normierung, Additivität (Kolmogorov-Axiome) abgeleitete Eigenschaften Mehrstufige Zufallsversuche


Herunterladen ppt "1 Vorlesung am 27.11.2006 Wahrscheinlichkeiten und ihre Berechnung Vorlesung am 4.12.2006: 1. Fortsetzung der Überlegungen zu Wahrscheinlichkeiten und."

Ähnliche Präsentationen


Google-Anzeigen