Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Beugungsmethoden. Warum nutzt man verschiedene Beugungsmethoden? -Bestimmung von Phasenanteilen -Bestimmung von Gitterparametern -Bestimmung der Symmetrie/Raumgruppe.

Ähnliche Präsentationen


Präsentation zum Thema: "Beugungsmethoden. Warum nutzt man verschiedene Beugungsmethoden? -Bestimmung von Phasenanteilen -Bestimmung von Gitterparametern -Bestimmung der Symmetrie/Raumgruppe."—  Präsentation transkript:

1 Beugungsmethoden

2 Warum nutzt man verschiedene Beugungsmethoden? -Bestimmung von Phasenanteilen -Bestimmung von Gitterparametern -Bestimmung der Symmetrie/Raumgruppe -Geometrie/Morphologie der Probe -Zeitaufwand -sonstige Effekte (z.B. Fluoreszenz, in-situ,…) -Verfügbarkeit

3 Beugungsmethoden Einkristallbeugung -Kristallstrukturbestimmung -(Symmetrie, Atompositionen, Gitterparameter, …) Pulverbeugung -Phasenidentifizierung -quantitative Phasenanalyse -auch Aussagen zur Kristallstruktur (bis zu einem gewissen Level an Komplexität)

4 4 Die Ewald Konstruktion

5 5 Max von Laue 1879 – 1960 Göttingen, Berlin, Zürich, Frankfurt/Main, Würzburg, Berlin

6 Beugungsmethoden Laue-Verfahren -ältestes Beugungsverfahren -Nachweis der Theorie von M. von Laue (kristalliner Aufbau der Materie) -für Einkristalle geeignet (Reflexion oder Transmission) -Nutzung weißer, polychromatischer (Bremsstrahlung) -alle Netzebenen erfüllen die Bragg-Bedingung gleichzeitig (es gibt eine Serie von Ewald-Kugeln: eine für jede Wellenlänge) -Probe muss nicht gedreht werden -sehr schnelles Verfahren durch hohe Intensitäten (in situ, dynamische Prozesse)

7 7 Die Ewald Konstruktion für polychromatische Röntgenstrahlung

8 Beugungsmethoden Laue-Verfahren -alle Punkte auf einer Linie wurden von einer Wellenlänge gebeugt -Netzebene such sich Wellenlänge aus, die zu ihrem aktuellen Winkel passt -alle Punkte auf einer Linie gehören zu einer Zone -Reflektionen von Ebenen einer Zone liegen auf der Oberfläche eines imaginären Beugungskegels, dessen Achse die Zonenachse ist

9 Beugungsmethoden Laue-Verfahren -alle Punkte auf einer Linie wurden von einer Wellenlänge gebeugt -Punkte von Netzebenenfamilien liegen aufeinander (100, 200, 300 , /2, /3) -Punktposition wird durch  d nicht geändert, aber die Wellenlänge, welche von diesen Netzebenen gebeugt wird

10 Beugungsmethoden Laue-Verfahren Reflexionsmode -Detektor zwischen Probe und Quelle -Laue-Spots liegen für gewöhnlich auf einer Hyperbel Transmissionsmode -Detektor hinter Probe und Quelle -Laue-Spots liegen für gewöhnlich auf einer Ellipse

11 11 Die von Laue Methode im Transmissionsmodus Beugungsmaxima liegen an Ellipsen

12 12 Die von Laue Methode in der Reflexion Beugungsmaxima liegen an Hyperbeln

13 Beugungsmethoden Laue-Verfahren – Informationsgehalt Si (001) r 1 … Abstand Spot-Zentrum D … Abstand Probe-Detektor Transmission min -Limit Reflexion r 2 … Abstand Spot-Zentrum D … Abstand Probe-Detektor stark durch Compton-Effekt und diffuse Streuung beeinflusst

14 14 Symmetrieelemente in der von Laue Methode LiBaF 3, kubisch 4-zählige Symmetrieachse ist senkrecht zum Film LiBaF 3, kubisch 2-zählige Symmetrieachse ist senkrecht zum Film

15 Beugungsmethoden Laue-Verfahren – Informationsgehalt -Bestimmung der Kristallorientierung -Bestimmung der Kristallstruktur (v.a. auch Biomoleküle, komplizierte Kristalle) -Indizierung der hkl-Positionen möglich (Greninger-chart, Leonhardt-chart), oder Software-gestützt (i.Allg. sehr rechenaufwendig) -Form und Größe der Spots enthält Informationen zur Realstruktur, Spannungszuständen, etc. -Bestimmung von Netzebenenabständen aus Spotpositionen nicht möglich, dafür muss Energie der Spots bestimmt werden

16 Beugungsmethoden Laue-Verfahren – Form der Laue-Spots (für perfekte Kristalle) -Einflüsse: v.a. die Gestalt des Primärstrahls (Divergenz) -im divergenten Strahl ändert sich der Braggwinkel minimal -dadurch wird divergenter Strahl durch Beugung (Transmission) fokussiert -senkrecht zur Papierebene findet keine Fokussierung statt (elliptische Form) -keine solche Fokussierung im Reflexionsmodus, Divergenz steigt mit Entfernung vom Primärstrahl

17 17 Die von Laue Methode Linien anstatt der Punkte des reziproken Gitters: Min: min  hkl Max: max  hkl

18 18 Die von Laue Methode im Transmissionsmodus Bestimmung der Winkel  (Abweichung in der Beugungsebene) und  (Abweichung senkrecht zur Beugungsebene) mit Hilfe der stereographischen Projektion

19 19 Die Ewald Konstruktion für Einkristalle Richtiger Beugungswinkel (2  ), richtige Orientierung des Kristalls jetzt monochromatische Strahlung: nur EINE Ewald-Kugel

20 Beugungsmethoden Drehkristallverfahren -Monochromatische Strahlung -Kristall rotiert senkrecht zum Strahl um eine seiner kristallographischen Achsen -Zylindrischer Film/Detektor -Bestimmung von Gitterparametern von Einkristallen -reziproke Gitterpunkte, welche auf Ebenen senkrecht zur Drehachse des Kristalls liegen, schneiden die Ewald-Kugel in einem Kreis -gebeugte Strahlen liegen auf Kegeln (Laue-Kegel – Achse entlang Drehachse) -Öffnungswinkel der Kegel = f(,d hkl ) -auf zylindrischem Schirm entstehen Spots entlang von Linien Nachteile: -keine Aussage zur Symmetrie des Kristalls (wird von Symmetrie der Messanordnung überlagert) -keine eindeutige Indizierung der Reflexe möglich

21 Beugungsmethoden Drehkristallverfahren

22 22 Drehkristallverfahren

23 Beugungsmethoden Weissenberg-Verfahren (Weiterentwicklung des Drehkristallverfahrens) -Monochromatische Strahlung -Kristall rotiert senkrecht zum Strahl um eine seiner kristallographischen Achsen -Zylindrischer Film/Detektor  wie Drehkristallverfahren -Lösung von Kristallstrukturen -Messung korrekter Spot-Intensitäten -ein Satz äquidistanter reziproker Netzebenen (ein Laue-Kegel) senkrecht zur Rotationsachse (Streifen auf Film) -wird durch Blende ausgewählt -Drehung des Kristalls wird mit Bewegung des Schirms parallel zur Drehachse gekoppelt  Reflexe ziehen sich auseinander und sind eindeutig indizierbar

24 Beugungsmethoden Weissenberg-Verfahren (Weiterentwicklung des Drehkristallverfahrens)

25 Beugungsmethoden Einkristalldiffraktometer -Monochromatische Strahlung, möglichst 2D-Detektor

26 Beugungsmethoden Einkristalldiffraktometer -2 Rotationen reichen aus um jeden beliebigen reziproken Gitterpunkt auf den Rand der Ewald-Kugel zu drehen -Kristall in die 2  -Bedingung bringen -Problem: relativ voluminöser Aufbau des Diffraktometers und der Eulerwiege können die Messung bestimmter Laue-Spots verhindern  Kappa-Geometrie Drehung um  Drehung um 

27 Beugungsmethoden Einkristalldiffraktometer

28 Beugungsmethoden Einkristalldiffraktometer - Informationsgehalt -Wie finde ich bestimmte Reflexe auf dem Detektor? -Welche Reflexe habe ich gemessen? -mehrere Koordinatensysteme sind zu beachten (Kristall, Goniometer, Labor) -Rotationsmatrizen „übersetzen“ die Koordinatensysteme ineinander (enthalten die Diffraktometerwinkel) -Orientierungsmatrix kann aus Spotposition berechnet werden oder genutzt werden um Spots zu finden -Orientierungsmatrix resultiert aus metrischem Tensor -Bestimmung der Integralintensität -gesamter reziproker Gitterpunkt muss vermessen werden (  -scan; 2  -scan)

29 29 Strukturanalyse an Einkristallen mittels eines 4- Kreis-Diffraktometers  Untersuchung des reziproken Raumes  Bestimmung von Gitterparametern  Auswertung der ausgelöschten Reflexen (Information über die Subtranslationen im Kristallgitter)  Messung der diffraktierten Intensitäten (Information über die Symmetrie des Kristallgitters)  Entwurf der Raumgruppe  Entwurf der Atompositionen (Patterson Funktion, direkte Methoden)  Strukturverfeinerung (Gitterparameter, Atompositionen, Temperaturschwingungen der Atome)

30 Beugungsmethoden Einkristalldiffraktometer – Vorteil Flächendetektor -ein großes Segment der Kugel kann gleichzeitig vermessen werden kritisch ist die Wahl von D (Detektor,, Elementarzelle)

31 Beugungsmethoden Einkristalldiffraktometer – Informationsgehalt -Kristall wird rotiert, bzw. Detektor an verschiedene Positionen verfahren um verschiedene Beugungsbilder zu erhalten -Beugungsbild enthält typischerweise mehrere symmetrie-äquivalente Reflexe -rechnergestützte Auswertung zur Ableitung von Kristallorientierung, Raumgruppe und Gitterparametern -problematisch bei Proben hoher Symmetrie und kleiner Elementarzelle

32 Beugungsmethoden Pulververfahren

33 Beugungsmethoden Pulververfahren – Was ist ein „Pulver“? -eine große Anzahl (> 10 6 …10 7 ) zufällig orientierter Kristallite/Körner -reziproke Gitterpunkte werden zu Kugeln (alle Kristallorientierungen überlagern sich jetzt, r* = reziproker Netzebenenabstand) -Beugungsmaxima an der Überlagerung von Ewald-Kugel und Kugel durch des reziproken Gitters  Laue-Kegel auf jedem Punkt deren Oberfläche findet Beugung statt

34 Beugungsmethoden Pulververfahren – Was ist ein „Pulver“?

35 Beugungsmethoden Pulverbeugung -Intensitätsverteilung entlang der Ringe homogen (Pulverbedingung)  jeder (noch so kleine) Ausschnitt der Debye-Ringe liefert dieselbe Information -kann durch Probenrotation verbessert werden -Intensität: -kann durch Überlagerung mehrerer Reflexe definiert sein symmetriebedingt: Multiplizitätsfaktor zufällig: Pulverstatistik -winkeldispersiv: monochromatische Strahlung, Winkelbestimmung durch Detektorbewegung -energiedispersiv: polychromatische Strahlung, fester Beugungswinkel (erfordert Detektor der Energie diskriminieren kann, meist für in-situ-Verfahren an Synchrotronquellen)

36 Beugungsmethoden Debye-Scherrer-Methode -direkte Aufnahme der Ringe über Transmissions- oder Rückstreukameras beschränkt auf kleine oder sehr große Beugungswinkel -daher: Debye-Scherrer-Methode

37 Beugungsmethoden Debye-Scherrer-Methode -Laue-Kegel werden auf dem Film als Debye-Ringe abgebildet -Kamera erfasst nur geringen Ausschnitt des ganzen Rings -aber: alle Beugungswinkel werden gleichzeitig gemessen

38 Beugungsmethoden Debye-Scherrer-Methode -größerer Kameradurchmesser erhöht die Auflösung -verursacht höheren Untergrund (Luftstreuung) und erfordert längere Belichtung -Linien in der DS-Kamera unterliegen meist hoher instrumenteller Verbreiterung (Strahldivergenz, Probengröße, Kameragröße)

39 Beugungsmethoden (Para)Fokussierende Anordnungen -Probe wird aus dem Zentrum des „Diffraktometers“ auf den Rand (Fokussierungskreis) verschoben -erfordert gebogene Proben, um Strahl am Detektoreintritt zu fokussieren -Ziel sind scharfe Beugungslinien Seeman-Bohlin-Geometrie -Reflektionsmodus -divergenter Strahl Guinier-Geometrie -Transmissionsmodus -konvergenter Strahl beide Methoden haben begrenzte 2  -Bereiche

40 40 Pulverdiffraktometer mit fokussierender Beugungsgeometrie Guinier Seemann und Bohlin

41 Beugungsmethoden Pulverdiffraktometer -Nutzen dasselbe Prinzip wie Kameras für Pulverbeugung -messen 2  -Winkel und Intensität eines Ausschnitts der Debye-Ringe im reziproken Raum -Nachteil Diffraktometer gegenüber Kameras: Messen nicht den gesamten Winkelbereich auf einmal = längere Messzeiten -Messstrategie: Variation des Winkels 2  + Aufnahme der Intensität -jeder Peak entspricht einem Schnittpunkt mit einem Debye-Ring/Laue-Kegel

42 Beugungsmethoden Pulverdiffraktometer -Parafokussierende Geometrie: z.B. Bragg-Brentano-Geometrie

43 43 Pulverdiffraktometer Pulverdiffraktometer nach Bragg und Brentano  = 2  /2 = 

44 Beugungsmethoden Pulverdiffraktometer -Parafokussierende Geometrie: z.B. Bragg-Brentano-Geometrie -Filmaufnahmen sind bei dieser Geometrie unmöglich -modifizierte Seeman-Bohlin-Geometrie: Probe ist jetzt flach -Detektor bewegt sich in 2  um die Probe mit Abstand R (= Abstand Quelle-Probe) -Parafokussierung durch Erfüllung des Umfangswinkelsatzes: alle divergenten Strahlen der Quelle treffen durch Reflexion an der Probe in der Detektorblende wieder zusammen -durch Wanderung des Detektors entlang des Diffraktometerkreises, muss auch Probe mit halber Winkelgeschwindigkeit gedreht werden um tangential am Fokussierungskreis zu liegen -Fokussierungskreis ändert Radius mit 2  -Parafokussierung funktioniert im Bereich von 2  = x°…160° -Fehler durch flache Probe/Änderung Fokussierungskreisradius vernachlässigt

45 Beugungsmethoden Bragg-Brentano-Geometrie

46 Beugungsmethoden Diffraktometertypen: -Seeman-Bohlin-Typ: konstanter Fokussierungskreisradius, aber Änderung des Abstandes Detektor – Probe -hier mehrere Detektoren bzw. gebogenen PSDs einsetzbar -aber 2  = 0 nicht erreichbar (Justage sehr kompliziert, Standardproben) -vertikale und horizontale Anordnung -Bewegung von Quelle und Detektor (  -  ) oder Probe und Detektor (  -2  ) -kontinuierliche oder schrittweise (langsamer, höhere Präzision) Intensitätsmessung -neueste Geräte bieten die Möglichkeit in Transmission und Reflexion zu messen durch verschiedene Positionierung der Probe

47 Beugungsmethoden weitere Methoden: -Beugung unter streifendem Einfall (  -2  -Diffraktometer) -Eigenspannungsmessungen (4-Kreis-Diffraktometer) -Texturmessungen (4-Kreis-Diffraktometer) -nicht-koplanare Geometrien -Röntgenreflektometrie -… -konstante Eindringtiefe -erfordert Parallelstrahl


Herunterladen ppt "Beugungsmethoden. Warum nutzt man verschiedene Beugungsmethoden? -Bestimmung von Phasenanteilen -Bestimmung von Gitterparametern -Bestimmung der Symmetrie/Raumgruppe."

Ähnliche Präsentationen


Google-Anzeigen