Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin.

Ähnliche Präsentationen


Präsentation zum Thema: "Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin."—  Präsentation transkript:

1 Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin Heinrichs Seminarleiter: T. Albers, O. Faude

2 Gliederung 1. Grundlagen der Energiebereitstellung 2. Anaerob alaktazide E.b. 3. Anaerob laktazide E.b. 4. Aerobe (oxidative) E.b. 5. Zusammenfassung 6. Fazit

3 Grundlagen der Energiebereitstellung De Marées, H. (2003). Sportphysiologie, S. 341

4 Grundlagen der Energiebereitstellung Resynthese von ATP durch schrittweise Oxidation der Nährstoffe: – Zucker (Traubenzucker/ Glukose) – Fette (Fettsäuren) – gering: Eiweiße (Aminosäuren) Endprodukte: Harnstoff, Laktat, CO2, H2O und Wärme

5 Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 36

6 Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 39

7 Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 40

8 Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 40

9 Grundlagen der Energiebereitstellung Zwei Energiespeicher: Adenosintriphosphat (ATP) + Kreatinphosphat (KP) ATP = primärer, universeller Energielieferant sowie einziger direkt anzapfbarer Energiespeicher (in allen lebenden Zellen sowie in Muskelzellen) ATP beliefert direkt die Energie benötigenden Reaktionen  Voraussetzung für jede Art körperlicher Bewegung

10 Grundlagen der Energiebereitstellung ATP-Vorrat: 5 mmol ATP/kg Muskelfeuchtmasse (sehr geringe Menge an ATP in Muskelzelle gespeichert) = 3-4 Muskelkontraktionen (1-2 Sek. direkt verfügbar) Resynthese von ATP aus ADP: – aus Kreatinphosphat = anaerob alaktazid – über anaerobe E.b. = anaerob laktazid – über aerobe E.b. = aerobe Resynthese

11 Formen der Energiebereitstellung http://www.dr-moosburger.at/pub/pub023.pdf

12 Formen der Energiebereitstellung Zwei Hauptmechanismen der E.b.: Aerobe (oxidative) E.b.: Bildung von ATP unter O2-Verbrauch; in Mitochondrien Anaerobe E.b.: Bildung von ATP ohne O2-Verbrauch; im Sakroplasma

13 Anaerobe Energiebereitstellung Anaerobe E.b. erfolgt durch: a) Spaltung der gespeicherten energiereichen Phosphate ATP und KP = anaerob-alaktazid b) unvollständiger Abbau von Glukose unter Bildung von Laktat (anaerobe Glykolyse) = anaerob-laktazid ATP (ca. 2kcal) und KP (ca. 4-8 kcal)  Schnell verfügbar, jedoch nur für begrenzte Zeit (wenige Sekunden)

14 Anaerob alaktazide E.b. KP-Vorrat: größere Energiespeicher 15-20 mmol KP/kg Muskelfeuchtgewicht = 5-6 Sek. Arbeitsdauer (+ ATP = 6-8 Sekunden) Durch die Übertragung der Phosphatgruppe des KP auf das ADP wird wieder ATP gebildet  Wiederauffüllung des ATP Speichers Diese Reaktion erfolgt während der Muskelkontraktion und läuft sehr schnell ab

15 Anaerob alaktazide E.b. - Beispiele pH-Wert: 7,4 Laktat 1 mmol/l 6-10 (max.15) Sekunden Maximal-/ Schnellkraft, Schnelligkeit Kugelstoßen Weitsprung Hochsprung Golf

16 Anaerob laktazide E.b. Anaerobe Glykolyse: unvollständiger Abbau von Glukose und Glykogen über Brenztraubensäure (Pyruvat = Salz der BTS) zu Laktat Bildung von Milchsäure (Laktat) normaler Wert: im Blut: pH-Wert = 7 im Muskel: 6,9 Energieausbeute: 3 mol ATP/mol Glukose aus Glykogen zwischen 15 und 45 (max. 60) Sekunden Kraft-/Schnelligkeitsausdauer

17 Anaerob laktazide E.b. Aufgrund dessen, dass mehr BTS vorhanden ist, als aerob verwertet werden kann, entsteht Laktat Doppelt so große ATP-Resynthese pro Zeiteinheit aus anaerober Glykolyse gegenüber aerober Oxidation Dadurch sinkt der pH-Wert des Blutes Ruhelaktatwerte zwischen 0,8-1,5 mmol/l Blut Max. Laktatwerte: mehr als 20 mmol/l Blut

18 Anaerob laktazide E.b. Laktat fällt immer an, jedoch bei einer Intensität von 40- 75% der VO2 max. werden 70-90% des Laktats im Muskel oxidiert durch O2-Mangel am Anfang der Belastung oder durch Laktatanstiege in Bezug zur vermehrten BTS- Konzentration ohne einhergehende Sauerstoffschuld

19 Anaerob laktazide E.b. Eliminationsorte des Laktats: Belastete Muskulatur selbst (50%) Herzmuskel (15%) Inaktive Muskulatur (15%) In Leber (15%)

20 Anaerob laktazide E.b. Leistungsbegrenzend sind: Maximale dynamische Kraft der eingesetzten Muskulatur, sowie deren Koordination und Kontraktionsgeschwindigkeit Bildung der max. Energiemenge pro Zeiteinheit auf anaeroben Weg Größe des KP-Speichers Säuretoleranz des Sportlers

21 Anaerob laktazide E.b. De Marées, H. (2003). Sportphysiologie, S. 347

22 Anaerob laktazide E.b. Bsp.: 400m-Lauf Anfänglich hoher Abfall des KP Nach ca. 2s rasch ansteigende Glykolyserate bis zu 3 mmol/kg x s (Laktatbildung)  Azidose: Energiebedarf kann nicht vollständig über die Glykolyse und den oxidativen Stoffwechsel gedeckt werden

23 Anaerob laktazide E.b.  weiterer kontinuierlicher Abfall des KP  Abfall des ATP ( Abbruch oder Geschwindigkeitsverlust) Zunahme des aeroben Stoffwechselanteils auf ca. 20- 30 %, ca. 20-30 % alaktazid, 40-60 % laktazid

24 Anaerob laktazide E.b. De Marées, H. (2003). Sportphysiologie, S. 370

25 Anaerob laktazide E.b. Bsp.: 800-m-Lauf Weiterer Anstieg des oxidativen Stoffwechselanteils auf bis zu 50% Anaerob alaktazide Anteil dominiert zu Beginn der Belastung (bis zu 20%) Anaerob laktazide Anteil erreicht nach ca. 25 s sein Maximum, (bis zu 35%) Aerobe Energiebereitstellung steigt zum Ende hin an

26 Aerobe (oxidative) E.b. Bildung von ATP unter Verbrauch von Sauerstoff In Mitochondrien erfolgt durch vollständige Verbrennung (Oxidation) von: a) KH  Glukose durch Glykogenabbau = aerobe Glykolyse b) Fette  Fettsäuren (Betaoxidation) durch Fettspaltung (Lipolyse) jeweils zu CO2 und H2O Der Wasserstoff der Nährstoffe wird auf den Sauerstoff übertragen 31 mol ATP/mol Glukose aus Glykogen

27 5 Abbaustufen Glykogenolyse Glykolyse Bildung von aktivierter Essigsäure Trikarbonsäure- oder Zitronensäurezyklus Atmungskette

28 Gesamtbilanz De Marées, H. (2003). Sportphysiologie, S. 359

29 Zusammenfassung Aerob - Energiebereitstellung erfolgt relativ langsam - Die pro Zeiteinheit freigesetzte Energiemenge ist relativ klein + Die bereitgestellte Gesamtenergie ist relativ groß + 31 mol ATP/mol Glukose aus Glykogen Anaerob + Energiebereitstellung erfolgt relativ schnell + Die pro Zeiteinheit freigesetzte Energiemenge ist relativ groß -Gesamtenergiemenge ist relativ klein -3 mol ATP/mol Glukose aus Glykogen

30 Zusammenfassung De Marées, H. (2003). Sportphysiologie, S. 351

31 Beispielsportarten 30 Min Joggen: Aerob pH-Wert: 7,4 – 7,3 Laktat: 2-4 mmol/l Fussball: Meist aerob z.T. anaerob pH-Wert: 7,3 Laktat: 5-6 mmol/l 30 km Skilanglauf: Aerob pH-Wert: 7,4-7,3 Laktat: 8 mmol/l 2000m Rudern: Aerob pH-Wert: 7,2 Laktat: 10 mmol/l

32 http://www.dr-moosburger.at/pub/pub023.pdf

33 Fazit Bei Muskelarbeit wird chemische Energie (ATP) in mechanische Energie und Wärme umgewandelt Je höher die Energieflussrate (ATP-Bildung pro Zeit), desto höher die Leistung Intensität und Dauer der maximal möglichen Leistung verhalten sich gegenläufig Die Nährstoffe Kohlenhydrate und Fette sind unsere Energiespeicher, die je nach Intensität und Dauer der körperlichen Belastung auf unterschiedliche Art zur Energiegewinnung herangezogen werden

34 Fazit Jede Sportart benötigt eine spezifische Energiebereitstellung, die mit dem Muskelfasertyp zusammenhängt Die Energiebereitstellung im Muskelstoffwechsel ist abhängig vom Trainingszustand und zum Teil auch von der Ernährung Je besser der Fettstoffwechsel trainiert ist, desto sparsamer kann die Muskulatur mit den wertvollen Glykogenreserven umgehen

35 Literatur Neumann, Pfützner, Berbalk (1999). Optimiertes Ausdauertraining. Mayer u Mayer: Aachen H., De Marées (2003). Sportphysiologie. Sport und Buch Strauss: Köln. Jeukendrup AE, Gleeson M. (2004). Sports Nutrition. Human Kinetics.


Herunterladen ppt "Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin."

Ähnliche Präsentationen


Google-Anzeigen