Bernoulli Diagramm.

Slides:



Advertisements
Ähnliche Präsentationen
Unterschiede zwischen Flachkollektoren und Vakuumröhren
Advertisements

Wirtschaftlichkeit von Solaranlagen
Aerodynamische und akustische Grundbegriffe
Aus welcher Höhe sollte die Melone fallen?
Kraft oder Arbeitsmaschine?
Strömungstechnik II PEU Frank Kameier
Klassifizierung von Pumpen
Mit welcher Geschwindigkeit fiel die Melone?
1-dimensionale Stromfadentheorie - Excelübung
zeitliche Schwankungsgrößen
Rohrhydraulik Ziel: Sie verstehen die Grundlagen der Rohrhydraulik
Strömungstechnik II PEU Frank Kameier
FH D Fachhochschule Düsseldorf Fachgebiet Strömungstechnik und Akustik
Fachliche Vertiefung Strömungstechnik
1.Versuchsaufgabe: Das Betriebsverhalten einer Pelton-Turbine soll an einem Laborversuchsstand untersucht werden. Hierzu sind, mit Hilfe des Messwerterfassungsprogramms.
Aerodynamische und akustische Grundbegriffe
Die ebene Wirbelschicht als Strömungsinstabilität
FH D Fachhochschule Düsseldorf Fachgebiet Strömungstechnik und Akustik
FH D Fachhochschule Düsseldorf Fachgebiet Strömungstechnik und Akustik
Aufbau einer Thermischen Solaranlage
Vergleich Photovoltaik - Solarthermie (Effizienz/Kosten)
Termin II Prandtl´sches Staurohr
Rohrreibungsberechnung 1-D
Erstellt und bearbeitet von:
Motivation – Anwendung von Strömungstechnik in der Praxis
Kameier Volumenstrommessverfahren 2. Vorlesung Strömungstechnik II PEU Strömungsgeschwindigkeitsmessung - Prandtlsches.
Hydraulik I W. Kinzelbach Rohrströmung.
Klassifizierung von Pumpen
Strömungslehre-Übung zum Praktikum
Einführungsvorlesung
Frank Kameier 8. Vorlesung
Strömungsmaschinen – Ähnlichkeitstheorie Rohrreibungsberechnung 1-D
Frank Kameier - Strömungstechnik I und Messdatenerfassung Folie VL10/ Nr.1 WS13/14 Frank Kameier 10. Vorlesung Strömungstechnik.
Frank Kameier - Strömungstechnik I und Messdatenerfassung Folie VL9/ Nr.1 WS13/14 Frank Kameier 9. Vorlesung Strömungstechnik.
Frank Kameier 4. Vorlesung
Wiederholung zur 6. Vorlesung
Begriffe der Grenzschichttheorie
9. Vorlesung - Wiederholung
Strömungsmaschinen – Ähnlichkeitstheorie Rohrreibungsberechnung 1-D
Praktikum Radialventilator/Staubsauger
Frank Kameier Strömungstechnik II 4. Vorlesung Windenergieanlagen
Frank Kameier 11. Vorlesung
Frank Kameier 11. Vorlesung
Frank Kameier 6. Vorlesung
Frank Kameier - Strömungstechnik II Folie VL5/ Nr.1 SoSe14 Frank Kameier Strömungstechnik II 5. Vorlesung - Volumenstromessverfahren.
Frank Kameier Strömungstechnik II 2. Vorlesung
Versuch 2 Viskosimetrie
Lehrstuhl für Strömungslehre
Schnittpunkt von zwei Geraden
Frank Kameier Strömungstechnik II 3. Vorlesung
Frank Kameier - Strömungstechnik I und Messdatenerfassung Folie VL11/ Nr.1 WS14/15 Frank Kameier 11. Vorlesung Strömungstechnik.
Geometrie: CAD Geometrie kann mit beliebiger CAD-Software erstellt werden Wichtig: Das Fluidvolumen wird modelliert – also eine Art Negativ der Geometrie.
Wärme- und Strömungstechnik II
Frank Kameier - Strömungstechnik I und Messdatenerfassung FolieVL4+/ Nr.1 WS14/15.
Musterklausur – Lösung von Aufgabe 15 mit Hintergrund
Frank Kameier - Strömungstechnik II Folie/ Nr.1 SoSe14 Frank Kameier Strömungstechnik II Nacharbeit im Buch Schade/Kunz.
Hydraulik I W. Kinzelbach Rohrströmung.
pV pP p über Pumpe konstant
Frank Kameier - Strömungstechnik II PEU Folie VL11/ Nr.0 SomSe2015 Frank Kameier 11. Vorlesung Strömungstechnik II Gasturbine.
Frank Kameier - Strömungstechnik II PEU Folie VL4/ Nr.1 SoSe 2015 Frank Kameier 4. Vorlesung Strömungstechnik II Navier-Stokes-Gleichungen,
Frank Kameier 2. Vorlesung Strömungstechnik II
Frank Kameier 5. Vorlesung Strömungstechnik II -PEU
Praktikum Radialventilator/Staubsauger
Frank Kameier Strömungstechnik II PEU
Frank Kameier - Strömungstechnik II Folie VL7/ Nr.1 SoSe14 Frank Kameier Strömungstechnik II 7. Vorlesung Strömungsmaschinen.
Strömungsmaschinen Turbinen
Frank Kameier - Strömungstechnik I und Messdatenerfassung Folie VL10/ Nr.1 WS14/15 Frank Kameier 10. Vorlesung Strömungstechnik.
Rohrreibungsberechnung 1-D
Rohrreibungsberechnung 1-D
上课啦 小站三小 刘宝霞.
 Präsentation transkript:

Kavitation 5. Vorlesung Strömungstechnik II PEU • Allgemeine Beschreibung des Phänomens • Bernoulli Diagramm • Wirkungen • NPSH bei Pumpen

Bernoulli Diagramm

Bernoulli Diagramm

Druckverlauf durch eine Querschnittsverengung

Blasenimplosion aus: Bohl/Elmendorf: Strömungsmaschinen I, 2004

Implosionsdrücke aus: Bohl/Elmendorf: Strömungsmaschinen I, 2004

Spezifische Halteenergie oder Haltedruckhöhe und NPSH-Wert aus: Bezugspunkt s für die Haltedruckhöhe und Bezugspunkt s´ für den NPSH-Wert (aus KSB: Kreiselpumpenlexikon, 1974)

Bernoullische Gleichung mit Verlusten und Energiezufuhr YPumpe/Ventilator

spezifische Haltenergie der Anlage Haltedruckhöhe der Anlage NPSH-Wert (Net Positiv Suction Head) Je kleiner der NPSH-Wert einer bestimmten Pumpenart ist, desto besser ist also ihre Saugfähigkeit. Der die Kavitation begrenzende Druck im Saugstutzen der Pumpe wird von den Verhältnissen der gesamten Anlage, wie den angeschlossenen Rohrleitungen beeinflusst!

NPSH-Verlauf beim Absenken des Eintrittsdrucks und konstantem Durchsatz sowie konstanter Drehzahl. aus: Käppeli, Strömungslehre und Strömungsmaschinen, 2002.

Ermittlung des NPSH-Wertes (Absenken des Eintrittsdrucks) aus: Bohl/Elmendorf: Strömungsmaschinen I, 2004.

Pumpencharakteristik für 2 Drehzahlen und Verlauf des NPSH-Wertes aus: Käppeli, Strömungslehre und Strömungsmaschinen, 2002.

Beispielaufgabe: Pumpe in offenem Saugbetrieb NPSHPumpe=3,8 m Wasser 16° C PD=0,01816 bar q_v=14 l/s =999 kg/m3 p0=1018 hPa Druckverlust in der Rohrleitung ∆pV=14,7 kPa  HV=∆pV/( g)=1,5 m gesucht: zulässige geodätische Höhe des Saugmundes der Pumpe ↑ je kleiner der Pumpewert, desto günstiger

Net Positive Suction Head Netto-Energiehöhe am Eintritt = NPSH – vereinfachte „Eselsbrücke“ Net Positive Suction Head Netto-Energiehöhe am Eintritt = absolute Energiehöhe abzüglich der Verdampfungsdruckhöhe (10m – NPSH = Haltedruckhöhe) Eine Pumpe kann maximal aus der „Tiefe“ (10m-NPSH) ansaugen. oder Eine Pumpe kann maximal um (10m – NPSH) in die Höhe gehängt werden. Ein niedriger NPSH Wert ist eine positive Eigenschaft einer Pumpe!

„Pistol Shrimp“ Strahl (Hinweis von N. Stenzel) http://www.youtube.com/watch?v=eKPrGxB1Kzc http://www.nature.com/nature/journal/v413/n6855/full/413477a0.html

„Pistol Shrimp“ – Kavitationsblasen kollabieren mit einem Lichtblitz Fortbewegung mit einer Schubkraft: (Kavitation als Nebeneffekt) technische Daten: Kollabieren der Blasen mit Lichtblitz 5000 K (4700 °C) (Berechnung???) 97 km/h = 27 m/s ca. 190 dB in einem Meter Abstand instationärer Effekt: kürzer als eine Millisekunde