Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Bedeutung der Koordinationschemie für Transport und Verteilung von Metallen in Gewässern und Sedimenten Fällung und Auflösung von Carbonaten Hydrolyse.

Ähnliche Präsentationen


Präsentation zum Thema: "Bedeutung der Koordinationschemie für Transport und Verteilung von Metallen in Gewässern und Sedimenten Fällung und Auflösung von Carbonaten Hydrolyse."—  Präsentation transkript:

1 Bedeutung der Koordinationschemie für Transport und Verteilung von Metallen in Gewässern und Sedimenten Fällung und Auflösung von Carbonaten Hydrolyse und Bildung schwerlöslicher Oxide und Hydroxide Komplexbildung mit gelösten organischen Liganden Adsorption an Partikeloberflächen Redoxprozesse Biomethylierung

2 CO 2 Kohlendioxid steht im Zentrum der geochemischen Kreisläufe spielt eine zentrale Rolle in der Biosphäre: Photosynthese – Respiration und in geochemischen Prozessen, welche Gesteine auflösen und Minerale bilden In der Hydrosphäre wird Kohlenstoff vor allem als Ca(HCO 3 ) 2 transportiert CaCO 3 wird in Seen und im Ozean ausgefällt

3 The graph shows recent Monatsmittelwerte des global gemittelten atmosphärischen CO 2 über der Ozeanoberfläche

4 INSTITUT FÜR ANORGANISCHE CHEMIE Arbeitsgruppe Umwelt- und Radiochemie

5 INSTITUT FÜR ANORGANISCHE CHEMIE Arbeitsgruppe Umwelt- und Radiochemie

6 INSTITUT FÜR ANORGANISCHE CHEMIE Arbeitsgruppe Umwelt- und Radiochemie

7 0,0016% der Masse der Erde ist Kohlenstoff

8 Das Carbonatsystem der Ozeane und Binnengewässer HCO 3 -, CO 3 2- Enthält 60x soviel Kohlenstoff wie die Atmosphäre Ist das größte Kohlenstoffreservoir der Biosphäre

9 Quelle: Ott

10

11 Geochemischer Carbonat-Silicat Kreislauf Verwitterung von Kalk- oder Silicatgestein verbraucht CO 2 Ca 2 SiO 4 +4 H 2 O+4 CO 22 Ca(HCO 3 ) 2 +Si(OH) 4 (gelöst) Im Meer scheidet sich Kalk ab 2 Ca(HCO 3 ) 2 2 CaCO 3 +2 H 2 O+2 CO 2 Es bilden sich Kalksedimente. In diesem Reservior verbleibt der Kohlenstoff Jahrmillionen. An den Kontinentalrändern schiebt sich der Meeresboden unter die Landmassen (Subduktion), unter hohen Drucken und Temperaturen reagiert dort das Calciumcarbonat mit Quarz 2 CaCO 3 +SiO 2 Ca 2 SiO 4 +2 CO 2

12 Bei der Verwitterung der Silicate der Erdkruste wird CO 2 verbraucht: z.B. Kalkfeldspat (Anorthit) CaAl 2 Si 2 O H 2 O + 2 CO 2 = H 2 Al 2 Si 2 O 8 + Ca(HCO 3 ) 2 (gelöst) Beim Ausfallen der Carbonate im Ozean wird die Hälfte des bei der Verwitterung der Silicate verbrauchten CO 2 wieder frei: Ca HCO 3 - = CaCO 3 + H 2 O + CO 2

13 Coccolithophoriden einzellige Algen, besitzen ein Calcit- oder Aragonit-Skelett Quelle: Ott

14 Hydrothermale Quellen in der Tiefsee an aktiven Spreizungsachsen: Ca HCO Si(OH) 4 = CaSiO CO H 2 O Quelle: Ott

15 Verwitterung: Ursache der Wasserhärte Temporäre Härte (= Carbonathärte): Anteil an Calcium- und Magnesiumhydrogencarbonat Permanente Härte (=Sulfathärte): erfasst die gelösten Calcium- und Magnesiumsalze der Salzsäure, Schwefelsäure, Salpetersäure u.a.

16 Meerwasser: ________ Süßwasser:

17 mol L -1 atm -1

18 Verwitterung von Calcit, offenes System (bei Pa = Normaldruck) 0.038% v/v CO 2 in der Atmosphäre pH=8.3 [Ca 2+ ] = 5x10 -4 mol/L entspricht 2.8°dH 3% v/v CO 2 in der Bodenluft pH = 7.02 [Ca 2+ ] = 2.8x10 -3 mol/L entspricht 15.7°dH

19

20 Effekt der Landpflanzen auf die Verwitterung Durch den Abbau von Pflanzenresten im Boden wird in hohen Konzentrationen CO 2 produziert Die Anwesenheit der Vegetation beschleunigt die CO 2 -Verwitterung daher um das 100 – 150 fache Dadurch entzieht ein Wald-Ökosystem in Österreich der Atmosphäre im Jahr ca. 10 g C/m 2 also 100 kg C/ha Dieser Kohlenstoff wird als Ca(HCO 3 ) 2 ins Meer transportiert und dort als CaCO 3 ausgefällt. Die Hälfte des gebundenen CO 2 wird dabei frei, die andere Hälfte in den Carbonatsedimenten dauerhaft gespeichert.

21 Carbonatsystem der Gewässer: Geschwindigkeit der Gleichgewichtseinstellung Thermodynamisches Gleichgewicht stellt sich in der wässrigen Lösung im Allgemeinen rasch ein Gewässer sind meist nicht im Gleichgewicht mit der Atmosphäre, weil biologische Prozesse im Wasser CO 2 schneller produzieren oder konsumieren als der CO 2 Transfer zwischen der Atmosphäre und dem Wasser erfolgt. Bildung und Auflösung von CaCO 3 können verzögert erfolgen Metastabile Gleichgewichte: Aragonit (orthorhombisch) ist in einem natürlichen Wasser thermodynamisch weniger stabil als Calcit (trigonal). Unter bestimmten Bedingungen kann sich Aragonit gegenüber Calcit metastabil verhalten.

22 Metallionen in Gewässern Durch die zivilisatorischen Tätigkeiten sind die geochemischen Kreisläufe einer Anzahl metallischer Elemente beschleunigt natürlichen Flüsse: durch Verwitterung der Gesteine, vulkanische Emissionen, Verbreitung natürlicher Aerosole aus Böden und Meerwasser Die anthropogenen Flüsse übersteigen oft die natürlichen Flüsse. Die Gewässer sind dadurch besonders betroffen Anthropogene Quellen für Schwermetalle sind z.B. Erzgewinnung, metallverarbeitende Industrien, Verbrennung fossiler Brennstoffe, Zementproduktion Durch die Verbrennung fossiler Brennstoffe werden z.B. die Flüsse von As, Cd, Se, Hg, Zn in die Atmosphäre stark erhöht. Dadurch werden auch die Konzentrationen dieser Elemente im Wasser und in den Böden erhöht.

23 Schwermetall-Entgiftungsstrategien der Organismen Enzymatische Umwandlungen von toxischen zu weniger toxischen oder flüchtigen Spezies: Hg 2+ Hg 0 As(OH) 3 (CH 3 ) 3 As + -CH 2 COO - Arsenobetain Spezielle Membranen können den Durchtritt von Metallionen in besonders gefährdete Bereiche wie Gehirn, Fetus verhindern Hochmolekulare Verbindungen wie etwa die Metallthionein-Proteine können bis zu einer gewissen Speicherkapazität toxische Ionen fixieren und damit aus dem Verkehr ziehen

24 Lehrbücher: Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage. Berlin, New York: de Gruyter, W. Kaim, B. Schwederski: Bioanorganische Chemie. Stuttgart: Teubner, L. Sigg, W. Stumm: Aquatische Chemie - eine Einführung in die Chemie wässriger Lösungen und natürlicher Gewässer. vdf Hochschulverlag an der ETH Zürich. Stuttgart: Teubner, 1996.

25 Speziierung der Schwermetalle in der Umwelt Gelöst oder an feste bzw. kolloidale Phasen gebunden Komplexbildung mit verschiedenen Liganden in Lösung Verschiedene Redoxzustände Metallorganische Verbindungen Das Schicksal von Schwermetallen in den Gewässern hängt von der Speziierung ab (z.B. Transport in die Sedimente, Mobilisierung aus Sedimenten, Infiltration ins Grundwasser, Anreicherung in Organismen) Die Toxizität ist stark von der jeweiligen chemischen Spezies abhängig.

26 Hg als umweltrelevantes Schwermetall 4x10 -5 Massen% Hg in der Erdkruste Hg 2 2+ Hg 0 + Hg 2+ sehr schwerlösliche Minerale: Hg 2 Cl 2 und HgS HSAB-Prinzip Thiophilie des Quecksilbers: Starke Wechselwirkung mit schwefelhaltigen Liganden z.B. Thiole = Mercaptane = Quecksilberfänger

27 Quecksilberdampfdruck in Abhängigkeit von der Temperatur Bei 20°C im Gleichgewicht 13,6 mg/m 3 Hg in der Luft MAK-Wert: 0,1 mg/m 3 Metallisches Quecksilber ist gegenüber Luftsauerstoff bei Raumtemperatur stabil: keine Oxidhaut

28 Quecksilberverbindungen haben nur mit sehr harten Basen wie Fluorid und Nitrat den Charakter von Ionenkristallen. In anderen Fällen besitzen die Bindungen des Quecksilbers einen ungewöhnlich hohen kovalenten Anteil geringe elektrische Leitfähigkeit der wässrigen Lösungen, gute Löslichkeit auch in organischen Lösungsmitteln, z.B. Löslichkeit von HgCl 2 : Quelle: Heiko Potgeter

29 Quecksilber(II)verbindungen bilden mit vielen in Gewässern vorkommenden Anionen stabile Komplexe, dadurch kann die Wasserlöslichkeit stark erhöht werden. mit Halogenidionen: HgX 3 -, HgX 4 2- (vor allem im Meerwasser) Ungewöhnlich stabile Komplexe mit Huminstoffen (gelöste kolloidale Phase in Fließgewässern, Seen, Grundwasser)

30 Partikelgrößenverteilung von Huminstoff-Kolloiden

31 Huminstoffe: ubiquitär in aquatischen Systemen, binden Schwermetalle Funktionen: 1.Entgiftung 2.Transport Bindungsformen: 1.Sorption 2.non-exchangable binding

32 Organische Quecksilberverbindungen Wichtig ist ausschließlich die Oxidationsstufe +II Monoorganyle RHgX, Diorganyle R 2 Hg linear gebaut Kovalente Bindung Hg-C relativ geringe Bindungsenergien 50 – 200 kJ/mol kann leicht homolytisch unter Bildung von Radikalen gespalten werden (thermische oder photolytische Zersetzung) Lebensdauer in der Atmosphäre nur wenige Stunden

33 Synthesechemie: die einfach durchzuführende homolytische Spaltung der Hg-C Bindung wird für die Bildung von Radikalen ausgenutzt. In der Umwelt ist die Hg-C Bindung gegenüber Wasser und Luft weitgehend inert (aus kinetischen Gründen) Charakteristische Abbaureaktionen in der Umwelt: Acidolyse: RHgX + HA RH + AHgX Reduktion: RHgX + 2 H 2 O + 2 e - RH + HX + 2 OH - + Hg 0 Homolyse: R 2 Hg 2 R· + Hg 0

34 Entstehung von Dimethylquecksilber bei der Zersetzung von Monomethylquecksilber in Anwesenheit von H 2 S (H 2 S wird durch die mikrobielle Sulfatreduktion in reduzierenden Sedimenten gebildet): 2 CH 3 Hg + + S 2- CH 3 Hg-S-HgCH 3 (CH 3 ) 2 Hg + HgS

35 EigenschaftHg 0 CH 3 HgCl(CH 3 ) 2 HgHgCl 2 Hg 2 Cl 2 HgS Wasser- löslichkeit g/L bei 25°C 6· · ,9· Dampfdruck Pa bei 25°C 0,251, ,0161,3·10 -8 nicht messbar

36 Quelle: Heiko Potgeter

37 Verwendung von Quecksilber: Chloralkalielektrolyse –Amalgamverfahren (Hg-Kathoden). Wird zunehmend ersetzt (Diaphramaverfahren) Dentaltechnik für Zahnplomben (Amalgam), wird zunehmend ersetzt. Goldgewinnung durch Amalgamierung des Erzes, auch heute noch im Amazonasgebiet, sehr problematisch. Batterien, Schaltelemente, Meßtechnik (Thermometer). Organische Quecksilberverbindungen wurden als Saatbeizmittel und Fungizide in der Landwirtschaft eingesetzt (heute verboten). Quecksilberorganische Verbindungen noch immer im medizinischen und kosmetischen Bereich verwendet. Die Quecksilber-Fördermenge betrug zwischen 1900 und 1940 jährlich ca t und stieg 1973 bis auf t an. Heute beträgt sie weltweit Tonnen/Jahr. Zudem werden jährlich bis zu Tonnen bei der Verbrennung fossiler Brennstoffe freigesetzt.

38 Aufnahme mit der Nahrung: gelangt vor allem beim Verzehr von Pilzen, Fischen und Meerestieren über organische Quecksilberverbindungen in den Körper. So enthalten z.B. Thunfischkonserven durchschnittlich 366 mg/kg, im Vergleich dazu Frischobst nur 4,8 mg/kg. Die jährliche Hg-Aufnahme über Lebensmittel beträgt in Mitteleuropa pro Kopf ca mg Mit der Magensäure entsteht aus CH 3 Hg + das wenig dissoziierte CH 3 HgCl Molekül, das wegen seiner Fettlöslichkeit gut resorbierbar ist

39 Toxische Wirkung Anorganische Hg-Verbindungen: Giftigkeit hängt von der Wasserlöslichkeit der jeweiligen Verbindung ab. Hg 2+ ist bei pH 7 in Wasser leicht löslich und bildet mit den in Körperflüssigkeiten häufiger vorkommenden Anionen keine unlöslichen Verbindungen. Hg 2+ tritt mit den Thiol- und Disulfideinheiten der Proteine in Wechselwirkung, blockiert aktive Zentren, verändert Strukturen von Enzymen. Körpereigene Entgiftung durch Binden an Metallthioneine: Proteine, Molekulargewicht ca g/mol, 35% Cystein-Anteil.

40 Organische Quecksilberverbindungen Größte toxische Wirkung wegen des ambivalent lipophilen/hydrophilen Charakters Resorptionsrate bei oraler Aufnahme bis 95% Am giftigsten ist Methylquecksilber(II) wegen der (kinetisch) stabilen Hg-C Bindung Weniger stabile quecksilberorganische Verbindungen werden im Körper zu anorganischem Quecksilber metabolisiert und wirken daher eher wie dieses Wegen seines lipophilen/hydrophilen Charakters ist Methylquecksilber(II)chlorid in der Lage, biologische Membranen zu durchdringen und sogar die Blut-Hirn- Schranke und Plazenta-Membran zu überwinden.

41 Mutagene Wirkung durch die Bindung von CH 3 Hg + an Nukleobasen, z.B. 8-Aza-modifiziertes Adenin: Quelle: Kaim/Schwederski

42 Wirkungsweise von Methylquecksilber im menschlichen Körper

43 Methylcobalamin

44 Bioakkumulation und Biomagnifikation von Quecksilber

45 Bioakkumulation = Anreicherung von Toxinen gegenüber dem Medium (Wasser). Biomagnifikation = Anreicherung von Toxinen mit steigendem trophischem Niveau, z.B. lipophile Organometallverbindungen, die sich der Exkretion über Metallthioneine entziehen.

46

47 ElementMassen%Vol% O47,088,2 Si26,90,32 Al8,10,55 Fe 3+ 1,80,32 Fe 2+ 3,31,08 Ca5,03,42 Mg2,30,60 Na2,11,55 K1,93,49 Die häufigsten Elemente in der Erdkruste

48 Tabelle

49 Silicate Silicate sind die dominierenden gesteinsbildenden Minerale in der Erdkruste. Primäre Silicate: sind aus dem Magma durch Erstarrung hervorgegangen. Sekundäre Silicate: metamorphe Gesteine sowie die durch Verwitterung der primären Silicate entstandenen Tonminerale.

50 Kugelmodelle: SiO 4 Tetraeder und FeO 6 Oktaeder nur die obere Darstellung ist maßstäblich, in den unteren Darstellungen sind die Sauerstoffionen verkleinert.

51 Silicatstrukturen: Ketten- Band- und Schichtsilicate (Tetraedermodell) Quelle: Scheffer/Schachtschabel

52

53 Glimmerstruktur Quelle: Scheffer/Schachtschabel

54 Tetraedermodell eines Albits Quelle: Scheffer/Schachtschabel

55 Primäre Silicate Erguss- oder Eruptivgesteine: rasch abgekühlt Tiefengesteine: langsam abgekühlt Für das Magma ist die Bindung großer Mengen leichtflüchtiger Bestandteile (Gase) charakteristisch, wie H 2 O, H 2 S, Cl 2, Schwermetallchloride, CO 2. Diese entweichen bei den Ergussgesteinen

56

57

58

59 OH

60

61 Quelle: Scheffer/Schachtschabel

62

63

64

65

66 Bedeutung der Silicatverwitterung Natürliche Fruchtbarkeit und Elektrolytgehalt von Böden Überführung der Kieselsäure in Lösung Anreicherung von Alkali- und Erdalkalimetall-Ionen in Wässern Bildung von austauschaktiven Tonmineralen

67 Gelöste Kieselsäure Flusswasser und Meerwasser enthalten gelöste Kieselsäure in sehr geringen Konzentrationen Daher keine chemische Ausfällung Im SiO 2 Kreislauf des Ozeans ist Ausfällung von Kieselsäure nur durch Organismen möglich! Radiolarien, Diatomeen und Kieselschwämme bauen ihre Skelette aus Opal auf Es setzen sich schließlich Diatomeen- und Radiolarienschlämme ab (10 10 Tonnen SiO 2 jährlich) Im Süßwasser bildet sich poröse Diatomeenerde (Kieselgur) Diatomeen (=Kieselalgen) liefern % der gesamten Primärproduktion der Erde!

68

69 Tonminerale (Sekundärsilicate) Bilden sich inkongruent aus den Primärsilicaten im Kontakt mit der Verwitterungslösung Oder kongruent aus übersättigten Lösungen Ihre Zusammensetzung variiert über weite Bereiche, entsprechend dem Grad der Verwitterung

70

71


Herunterladen ppt "Bedeutung der Koordinationschemie für Transport und Verteilung von Metallen in Gewässern und Sedimenten Fällung und Auflösung von Carbonaten Hydrolyse."

Ähnliche Präsentationen


Google-Anzeigen