Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Grundlagen der aquatischen Physik

Ähnliche Präsentationen


Präsentation zum Thema: "Grundlagen der aquatischen Physik"—  Präsentation transkript:

1 Grundlagen der aquatischen Physik
W. Kinzelbach, IfU

2 Inhalt Transportprozesse in der aquatischen Umwelt
Strömungsvorgänge (Flüsse, Seen, Grundwasser) Mischungsvorgänge Chemische Reaktionen

3 Einige Grundbegriffe Wasser Volumen V m3 Abfluss Q m3/s
Schadstoffe etc. Masse M g Konzentration c g/m3 Fracht Qc g/s

4 Tracereinleitung Rhein 1

5 Tracereinleitung Rhein 2

6 Abwassereinleitung Ostsee

7 Rauchfahne Ätna

8 Rauchfahne Schornstein

9 Tchernobyl-Fahne ( )

10 CKW-Fahnen im Grundwasser Raum Heidelberg (1981)

11 Warmwassereinleitung Donau

12 Gemeinsamkeiten: Prozesse
Mittlere Verfrachtung: Advektion Vermischung Molekulare Diffusion Turbulente Diffusion Dispersion Quellen und Senken Chemische und biologische Umwandlung Adsorption, Sedimentation

13 Advektion bei uniformer Strömung
u 1s u Einheitsfläche Volumen, das in der nächsten Sekunde die Einheitsfläche quert Masse, die pro Sekunde durch die Einheitsfläche tritt: (kg/m2/s)

14 Zeitliche und räumliche Variabilität von Strömungsfeldern
Turbulente Geschwindigkeitsvariationen Heterogenität eines Aquifers Laminare Strömung

15 Advektion bei zeitlich und/oder räumlich variabler (turbulenter) Strömung
Mittelung über Zeit: Mittlere Advektion Turbulente Diffusion Mittelung über Raum: Dispersion

16 Typische Advektionsgeschwindigkeiten
Fluss 1 m/s See 1 mm/s Grundwasser 1 m/d Bodenzone 1 m/a

17 Mischungsprozesse Molekulare Diffusion (durch Molekularbewegung)
Turbulente Diffusion (durch Wirbel) Dispersion (durch systematische räumliche Variabilität der Strömungsgeschwindigkeit)

18 Molekulare Diffusion Durch das Ficksche Gesetz beschrieben
Einheit: kg/m2/s Diffusionskoeffzient Dm in Wasser in der Grössenordnung 10-9 m2/s

19 Turbulente Diffusion Wird in Analogie zum Fick‘schen Gesetz beschrieben Einheit: kg/m2/s Turbulente Diffusionskoeffizienten im Fluss ungleich in vertikaler und transversaler Richtung. Näherungsformeln: mit h Wassertiefe, IE Reibungsgefälle Grössenordnung: m2/s

20 Fickscher Diffusionsprozess
Oder: Schwerpunkt: xs = ut Breite der Verteilung:

21 Dispersion Wird in Analogie zum Fick‘schen Gesetz beschrieben
Einheit: kg/m2/s Näherungsformel für Fluss: mit h Wassertiefe IE Reibungsgefälle Grössenordnung: m2/s

22 Wirkungsweise der Dispersion
Differentielle Advektion wird durch laterale turbulente Diffusion asymptotisch zu Dispersion, die dem Fickschen Gesetz folgt. Dispersion folgt aus der gemittelten Betrach- tung und wird durch systematische räumliche Variationen in der Geschwindigkeit verursacht

23 Alle Stoffflüsse in der Übersicht
Advektion Molekulare Diffusion Turbulente Diffusion Dispersion Gesamtfluss

24 Massenbilanz: in 1D V=ADx Erhaltungsgleichung für gelöste Masse
Zeitintervall [t, t+Dt] Speicherung von gelöster Masse Verluste aus Abbau nach Reaktion 1. Ordnung Gewinn durch Einträge V=ADx Dx x x+Dx Erhaltungsgleichung für gelöste Masse

25 Transportgleichung 1D Im Limes:
Nach Einsetzen der Ausdrücke für die Flüsse Verallgemeinerung auf 3D:

26 1D Transportgleichung Molekulare Diffusion Turbulente Diffusion und
Dispersion Quellen/ Senken Advektion Speicherung Strömungsmodell Konti.-gleichung Impulsgleichung Energiegleichung Zustandsgleichungen Diffusions/ Dispersionsmodell z.B. Ficksches Gesetz mit anisotropem Dispersionstensor Quellen/ Senkenmodell Z. B. Chem Abbau Bio. Umwandlung Sedimentation Adsorption

27 Invarianten Typische Zeitskalen Dimensionslose Verhältnisse
Advektion TA = L/u Diffusion/Dispersion TD = L2/D Chemie (Reaktion 1. Ordnung) TC = 1/l Dimensionslose Verhältnisse Peclet Zahl Pe = TD/TA = uL/D Damköhlerzahl Da = TD/TC = (lL2)/D

28 Strömung in Flüssen Normalabfluss: Gleichgewicht zwischen Hangabtrieb und Reibung, Energiegefälle IE = Sohlgefälle IS u querschnittsgemittelte Fliessgeschwindigkeit kstr Stricklerbeiwert rhy hydraulischer Radius (Querschnittsfläche/Benetzter Umfang) Q Abfluss Verallgemeinerung für gegliedertes Gerinne

29 Geschwindigkeitsprofile
Vertikal: Logarithmisches Profil Horizontal: Z. B aus Normalabfluss im gegliederten Gerinne z dw Ai, ui, Qi

30 Kritischer Abfluss Fr = 1 mit Fr < 1 Strömen Fr > 1 Schiessen
b Wasserspiegelbreite Flachwasserwellengeschwindigkeit

31 Saint-Venant Gleichungen
Kontinuitätsgleichung Impulsgleichung Für Rechtecksgerinne: Stationäre Gleichungen mit q = 0 und A = bh, Q = bhu liefern Daraus: z. B. Staukurve

32 Staukurvenberechnung
Differenzenapproximation strömender Fall: Je eine Randbedingung oberstrom und unterstrom Berechnung stromauf von unterer Randbedingung her (Einstauhöhe am Wehr) Starte Berechnung bei xWehr mit hWehr Bei schiessendem Abfluss, Berechnung stromab, 2 Randbedingungen oberstrom

33 Wellendurchgang (kinematische Welle)
und Annahme, dass überall Normalabfluss herrscht liefert Wellengleichung für h mit Wellengeschwindigkeit Q = uA, Normalabfluss bedeutet: Q = f(h), A=g(h) Wellengleichung mit Wellengeschwindigkeit c Wasserwelle (c) schneller als Schmutzwelle (u).

34 Strömung in Seen Mittlere Aufenthaltszeit t = V/Q Seenrückhalt Q(t)
Warum Schnittpunkt im Maximum? Qin Qout Zeit

35 Schichtung in Seen Dichte von Süsswasser als Funktion der Temperatur
Stabile Schichtung im Sommer und eventuell im Winter, dazwischen Mischung Sommer Herbst Winter Frühling T z Epilimnion Thermokline Hypolimnion

36 Oberflächenseichen und interne Seichen
Schwappungen Wellengeschwindigkeit Oberflächenseiche Wellengeschwindigkeit interne Seiche h mittlere Tiefe, hE Tiefe Epilimnion, hH Tiefe Hypolimnion Periode erste Oberwelle der Seiche L Länge See

37 Oberflächenseichen und interne Seichen
z x x Epilimnion h Hypolimnion x

38 Grundwasser: Fliessgesetz (1)
Grundwasserströmung ist fast immer laminar Lineares Energieverlustgesetz Spezifischer Abfluss = Filtergeschwindigkeit v Darcy: v = kf I kf Durchlässigkeitsbeiwert I Piezometerhöhengefälle Abstandsgeschwindigkeit u = v/n

39 Darcy‘s Experiment Dh Q A L Beobachtung: Q proportional zu A, Dh
Q invers proportional zu L Folgerung: Q = k A Dh/L oder v = Q/A = k I

40 Grundwasser Fliessgesetz (2)
Spezifische Energie H = z + p/rg + v2/2g = h + v2/2g Im Grundwasser: v sehr klein, v2/2g vernachlässigbar H = h Verallgemeinerung des Darcy-Gesetzes K Durchlässigkeitstensor

41 Höhengleichenplan GW GOK Abstich Eingemessene Kante NN h Durch Interpolation aus Messungen in Messstellen (Vorsicht: Lichtlot misst Abstich, daraus durch Subtraktion von eingemessener Kante: Piezometerhöhe) Einfachste Interpolation: Hydrologische Dreiecke und lineare Interpolation (siehe Übung)

42 Wichtigste Formel Q = AvF= AkfI = bmkfI = bTI vF A m b
T Transmissivität T = mkf, b Breite, m Mächtigkeit

43 Brunnenformel Radiale Zuströmung zum Brunnen
Filtergeschwindigkeit im Abstand r aus Kontinuität Q = vrA = vr 2p r m Daraus: vr = Q/(2prm) vr r m Q

44 Superpositionsprinzip
Brunnen in Grundströmung: Pumprate Q Q v0 b xs Aquifermächtigkeit m, Filtergeschwindigkeit der Grundströmung v0 Bestimme die Entnahmebreite b und den Staupunktsabstand xs

45 Entnahmebreite und Staupunktsabstand
Entnahmebreite aus Kontinuität: Zufluss zu Entnahmebereich = Pumprate Q = b m v0 oder b = Q/(mv0) Staupunktsabstand aus Bedingung v = vGrund + vBrunnen = 0 für Punkt auf x-Achse v0 - Q/(2pxsm) = 0 oder xs = Q/(v02pm)

46 Chemische Reaktionen Reaktion 1. Ordnung, z. B. bakterieller Abbau, wenn Substrat limitierend ist Reaktion 0. Ordnung, z. B. bakterieller Abbau ohne Limitation durch Substrat oder Nährstoffe Allgemein für bakterielle Abbau: Michaelis Menten-Kinetik Lösung: exp-Funktion 0. Ordnung für c » K, 1. Ordnung für c « K

47 Chemische Reaktionen In Grundwasser (oder an Flusssediment) Adsorption
Lineare Adsorptionsisotherme bei kleinen Konzentrationen c = gelöste Konzentration, ca = adsorbierte Konzentration bewirkt Verzögerung des Transports um Retardierungsfaktor R Ersetze:

48 Kombination aller der Transportprozesse
Strömungsrichtung t=0 x Advektion t=Dt x Advektion und Dispersion x Advektion, Dispersion und Adsorption x Advektion, Dispersion, Adsorption und Abbau x

49 Transportgleichung: 1-D Lösung
Instantaner Puls zur Zeit t = 0 am Ort x = 0 mit Masse M in eindimensionale Strömung (Säulenversuch im Labor, Fluss) A durchströmter Querschnitt, D Diff./Disp.-koeffizient, u Fliessgeschwindigkeit, l Abbaurate, für u = 0 rein diff. Lösung

50 Konzentrationsverlauf in x: Profil

51 Weitere Lösungen durch Superposition
Im Raum Flächenquelle = Überlagerung von vielen Punktquellen Undurchlässiger Rand durch Spiegelung In der Zeit Permanente Emission = Summe von instantanen Emissionen

52 Konzentrationsverlauf in t: Durchbruchskurve
Vorsicht: nicht symmetrisch Schreibe MATLAB-Programm für Profil und Durchbruchskurve Zeit

53 3-D Lösung Instantaner Puls zur Zeit t = 0 am Ort x = 0 mit Masse M in eindimensionale Strömung Fliessrichtung parallel zur x-Achse Dx,y,z Diff.-koeffizienten in x,y,z-Richtung u Fliessgeschwindigkeit, l Abbaurate Randbedingungen durch Spiegelung

54 Transportmodell der TA-Luft
Gauss-Fahne Q Quellstärke u mittlere Windgeschwindigkeit H effektive Emissionshöhe sz(x) = axb Diffusionsparameter sy(x) = gxd a,b,g,d abhängig von Stabilitätsklasse l Abbaurate (einschl. Deposition) s2 = 2Dt

55 Boxmodell (1) See mit Qin = Qout = Q, Zuflusskonzentration cin = konstant Anfangskonzentration c = c0 Stoff mit Abbaureaktion 1. Ordnung, Rate l, See vollständig durchmischt Massenbilanz Stationäre Lösung Instationäre Lösung

56 Boxmodell (2) Allgemeinerer Fall: Zuflusskonzentration nicht konstant
Mit c0 = 0 und Startzeit t0 = kann dies geschrieben werden als: f ist die Transferfunktion Der gemischte See entspricht einem Exponentialmodell (siehe auch gemischter Reaktor) Andere Transferfunktion (Pfropfenströmung)

57 Boxmodell (3) Boxmodelle werden unter anderem verwendet für die Interpretation von Umwelttracerdaten Beispiele Altersbestimmung von Grundwasser mit Tritium, Freonen, SF6

58 Prinzip der Altersdatierung mit Tracern
Resultat: Porengeschwindigkeit Mit Porosität erhält man spezifischen Abfluss Verzögerung t Mit Fläche erhält man Gesamtzufluss L

59 Atmosphärische CFC Konzentrationen in der
südlichen Hemisphäre F12 F11

60 Tritiumpeak im Niederschlag aus atmosphärischen Atombombenversuchen


Herunterladen ppt "Grundlagen der aquatischen Physik"

Ähnliche Präsentationen


Google-Anzeigen