Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Hypothesen - 1 Prüfung statistischer Hypothesen Die inferenzstatistische Hypothesenprüfung erlaubt Aus- sagen über Hypothesen in einer Population, aus.

Ähnliche Präsentationen


Präsentation zum Thema: "Hypothesen - 1 Prüfung statistischer Hypothesen Die inferenzstatistische Hypothesenprüfung erlaubt Aus- sagen über Hypothesen in einer Population, aus."—  Präsentation transkript:

1 Hypothesen - 1 Prüfung statistischer Hypothesen Die inferenzstatistische Hypothesenprüfung erlaubt Aus- sagen über Hypothesen in einer Population, aus welcher die untersuchten Stichproben gezogen wurden. Hierbei schätzt man über Stichprobenkennwerte Populations- kennwerte und führt mit Hilfe dieser Schätzungen eine Hypothesenprüfung durch.

2 Hypothesen - 2 Was sind statistische Hypothesen? Statistische Hypothesen sind Erwartungen über Unterschiede zwischen oder Zusammenhänge von Variablen, die vor einer Untersuchung formuliert werden. Beispiele für statistische Hypothesen: Frauen sind ängstlicher als Männer. Frauen und Männer unterscheiden sich nicht in Ihrer Ängstlichkeit. Gerichtet/ Ungerichtet? H0?

3 Hypothesen - 4 Nullhypothese und Alternativhypothese Bei statistischen Tests werden immer – unabhängig von der Erwartung des beteiligten Forschers – zwei gegensätzliche Hypothesen formuliert: (a)Die Nullhypothese (H 0 ) besagt, dass es keinen Unter- schied zwischen zwei Populationen (bzw. keinen Zu- sammenhang zwischen zwei Merkmalen) gibt. (b)Die Alternativhypothese (H 1 ) besagt dagegen, dass es einen Unterschied (bzw. einen Zusammenhang) gibt. Es kann also immer nur eine von beiden Hypothesen zutreffen! Die beiden statistischen Hypothesen (H0und H1) werden unabhängig von den tatsächlichen inhaltlichen Erwartungen formuliert.

4 Zwei Formen der Alternativhypothese Formale Schreibweise 1.Ungerichtete Alternativhypothese : H1: μ1 μ2 H0: μ1= μ2 2. Gerichtete Alternativhypothese (1.Möglichkeit): H1: μ1> μ2 H0: μ1 μ2 Gerichtete Alternativhypothese (2. Möglichkeit): H1: μ1< μ2 H0: μ1 μ2 => Die H0 hängt also von der Auswahl der H1 ab!

5 Zwei Fehler bei der Hypothesenprüfung Je nach der Entscheidung kann man zwei Fehler machen: α-Fehler/ Fehler erster Art 1.Man entscheidet sich für die H 1, obgleich zwischen den Populationsmittelwerten kein Unterschied existiert (α-Fehler bzw. Fehler erster Art). Ablehnung der richtigen Nullhypothese Bsp.: Es wird die bessere Wirkung eines neuen, teueren Medikaments angenommen, obwohl es in der Population keinen besseren Therapieeffekt gibt (großes N!).

6 Zwei Fehler bei der Hypothesenprüfung 2. β-Fehler bzw. Fehler zweiter Art Man entscheidet sich für die H 0, obgleich es auf Populationsebene einen bedeutsamen Unterschied gibt Beibehaltung der falschen Nullhypothese Bei einer Studie mit N=10 soll der Einfluss des Mobilfunktelefonierens auf die Aufmerksamkeit der Fahrer während der Autofahrt überprüft werden. Aufgrund der kleinen Stichprobe kommt es zu keinen signifikanten Ergebnissen Für beide Fehlertypen sollte vor einer Untersuchung die gewünschte Wahrscheinlichkeit festgelegt werden!

7 Hypothesen - 7 Das α-Niveau Das α-Niveau gibt an, wie unwahrscheinlich die H 0 sein muss, damit die H 1 angenommen wird. Wenn p α, wird die H 1 angenommen. Konventionen für das α-Niveau: p 0.05 signifikantes (statistisch bedeutsames) Ergebnis α 0.01 hoch signifikantes Ergebnis α 0.10 marginal signifikantes Ergebnis

8 Hypothesen - 8 Das β-Niveau Das β-Niveau gibt an, wie wahrscheinlich es ist, dass in der Population kein Unterschied besteht, obwohl der Test zu einem signifikanten Ergebnis kommt. Mit der Wahrscheinlichkeit β wird also die H 0 fälschlicher- weise angenommen. In vielen statistischen Untersuchungen wird nicht beachtet, dass der β-Fehler viel zu groß ist, um die Ergebnisse zu interpretieren. Wir werden später besprechen, wie man den β-Fehler verkleinern kann!

9 Hypothesen - 9 Statistische Entscheidungen In der Population gilt die Testergebnis Ent- scheidung H0H0 H1H1 p > αH 0 p < αH 1 korrekt β-Fehler α-Fehler

10 Drei Formen des t-Tests 1)Der t-Test für unabhängige Stichproben: Dieser Test prüft, ob sich die Mittelwerte von zwei Gruppen unterscheiden (2)Der t-Test für abhängige Stichproben Dieser Test prüft, ob sich der Mittelwert einer Stichprobe zu zwei Messzeitpunktenunterscheidet (3)Der Ein-Gruppen t-Test Dieser Test prüft, ob sich der Mittelwert einer Gruppe von einem vorgegeben Wert unterscheidet

11 Hypothesen – 10 Der t-Test für unabhängige Stichproben Mit dem t-Test für unabhängige Stichproben wird ver- glichen, ob sich zwei Populationsmittelwerte voneinander unterscheiden. Der t-Test gehört zu den parametrischen Testverfahren. Parametrische Testverfahren setzen eine bestimmte Verteilungsform (in der Regel die Normalverteilung) des untersuchten Merkmals voraus. Daher bildet die Normalverteilung des untersuchten Merkmals eine Vorraussetzung für den t-Tests.

12 Hypothesen – 11 Der Kennwert des t-Tests Der t-Test prüft die bedingte Wahrscheinlichkeit Kennwert des t-Tests ist die Differenz der Mittelwerte der beiden Stichproben: Wenn gilt p < α, wird die H 0 verworfen und damit die H 1 angenommen.

13 Hypothesen – 12 Stichprobenkennwerteverteilung unter der H 0 Um die Wahrscheinlichkeit zu bestimmen, wird eine theo- retische Stichprobenkennwerteverteilung der Mittel- wertsdifferenzen unter der Nullhypothese gebildet. Die theoretische Verteilung von Mittel- wertsdifferenzen ist nur bei großen Stich- proben normalverteilt. Bei kleineren Stichproben ergibt sich eine schmalgipfligere Verteilung. gesucht: p(Δ x )

14 Hypothesen – 13 Der Standardfehler der Stichprobenkennwerteverteilung Der Standardfehler der Stichprobenkennwerteverteilung des t-Tests hängt von den Standardabweichungen und den Größen der beiden Teilstichproben ab:

15 Hypothesen – 14 Der Standardfehler der Stichprobenkennwerteverteilung Achtung: Zur Bestimmung der Wahrscheinlichkeit eines solchen Wertes darf nicht die Standardnormalverteilungs- tabelle angewandt werden, da die Mittelwertsdifferenz nicht normalverteilt ist! Jetzt kann der empirische Mittelwertsunterschied mit dem Standardfehler der verglichen werden:

16 Hypothesen – 15 Die t-Verteilung Analog zum Vorgehen bei der z-Standardisierung wird auch hier der Kennwert durch die Streuung geteilt. Dieses Verhältnis bildet die Teststatistik des t-Tests: df steht für degree of freedom, also für die Freiheitsgrade.

17 Hypothesen – 16 Die Freiheitsgrade der t-Verteilung Die Freiheitsgrade der t-Verteilung berechnen sich als: Dabei beeinflussen die Freiheitsgrade die Form der t-Ver- teilung: Bei vielen Freiheitsgraden (df > 120) ist die t-Verteil- ung nahezu identisch mit der z-Verteilung. Je weniger Frei- heitsgrade gegeben sind, desto schmalgipfliger wird die t-Verteilung.

18 Hypothesen – 18 Aus einer Tabelle für die t-Verteilung (siehe Leonhart, S 438ff)wird ein kritischer t-Wert in Abhängigkeit der Freiheitsgrade und des α-Niveaus festgelegt. Weil keine Werte für df=76 angegeben sind, nehmen wir die nächst kleinere Zahl. So ergibt sich ein konservativer Test. Entscheidung über die Nullhypothese Wenn t emp > t krit, kann die H 0 verworfen werden.

19 Der t-Test für unabhängige Stichproben (1)Formulierung der (inhaltlichen und statistischen) Hypothesen (2)Operationalisierung des Merkmals (3)Erfassung des gleichen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mittelwerte in beiden Stichproben (5)Schätzung der Populationsvarianzen (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1

20 Hinweise: Bei einer gerichteten Hypothese sollte die Differenz immer so gebildet werden, dass der als kleiner erwartete Wert von größeren Wert subtrahiert wird. Wenn die Hypothese zutrifft, muss der empirische t-Wert dann positiv sein. Bei einer ungerichteten Hypothese spielt die Richtung der Subtraktion keine Rolle (man nimmt den Betrag).

21 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianzen (6)Berechnung des Stan-dardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 2 Inhaltliche Hypothese: Wörter werden besser erinnert, wenn sie tiefer verarbeitet werden. Statistische Hypothesen: H 0 : μ emo = μ struk H 1 : μ emo > μ struk Operationalisierung des Merkmals: Die Erinnerungsleistung wird als Anzahl der Wörter bestimmt, die in einem free recall Test erinnert werden.

22 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianzen (6)Berechnung des Stan-dardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 3 strukturellemotional

23 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianz (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 4 strukturellemotional

24 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianz (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 5

25 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianz (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 6

26 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianz (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 7 Festlegung des Alphaniveaus: α =.05 Art des Tests: einseitig vs. zweiseitig einseitig (wegen der gerichteten Alternativ-Hypothese)

27 Ein- vs. Zweiseitiges Testen Der t-Test 8 Einseitiger Test: Signifikant, wenn Zweiseitiger Test: Signifikant, wenn Betrag von t, d.h. das Vorzeichen spielt keine Rolle!

28 Der t-Test - 9 Die t-Verteilung α =.05 t(8) = 1.86 (einseitig) t(8) = 2.31 (zweis.) α =.01 t(8) = 2.90 (einseitig) t(8) = 3.36 (zweis.)

29 (1)Formulierung der (inhaltlichen und statistische) Hypo- thesen (2)Operationalisierung des Merkmals (3)Erfassung des glei- chen Merkmal in zwei unabhängigen Stichproben (4)Berechnung der Mit- telwerte in beiden Stichproben (5)Schätzung der Pop- ulationsvarianz (6)Berechnung des Standardfehlers der Mittelwertsdifferenz (7)Berechnung des empirischen t-Werts (8)Bestimmung des kritischen t-Werts (9)Entscheidung über H 0 und H 1 Der t-Test für unabhängige Stichproben Der t-Test - 10 Fazit: Der Test hat gezeigt, dass Wörter besser erinnert werden, wenn sie emotional verarbeitet wurden, als wenn sie strukturell verarbeitet wurden.

30 Voraussetzungen des t-Tests für unabhängige Stichproben: (1)Intervallskalenniveau der Variable (2)Normalverteilung des Merkmals in der Grundgesamtheit (3)Varianzhomogenität (Gleiche Varianzen des Merkmals in beiden Populationen) (4)Unabhängigkeit der Stichproben

31 Der t-Test für abhängige Stichproben Definition: Stichproben werden als abhängig bezeichnet, wenn die Ziehung eines Merkmalsträgers in die erste Stichprobe die Zugehörigkeit eines Merkmalsträgers zur zweiten Stichprobe beeinflusst. Abhängige Stichproben ergeben sich durch Messwieder- holung oder Parallelisierung bzw. Matching. Warum parallelisiert man Stichproben? Ein Test für abhängige Stichproben hat eine höhere Power (Teststärke), d.h. es ist wahrscheinlicher, dass ein bestehender Unterschied nachgewiesen werden kann!

32 Der t-Test für abhängige Stichproben Nun wird die Verteilung der mittleren Differenzen benötigt. Diese berechnet sich nach dem Standardfehler für den Mittelwert wie folgt: Anschließend wird die mittlere Differenz an dem Standard- fehler relativiert. Das Ergebnis dieser Standardisierung ist wiederum t-verteilt. t-Tests für abh. Stichproben - 8

33 Hypothesen Die statistischen Hypothesen des t-Test für abhängige Stichproben beziehen sich auf den Mittelwert der Differenzen aller Personen Vorteil: Es ist nun unerheblich, ob innerhalb der Messzeitpunktegroße Varianz gegeben ist Ungerichtete Hypothese: –H0: μ= 0 –H1: μ 0 Gerichtet Hypothese (1): –H0: μ 0 –H1: μ> 0 Gerichtet Hypothese (2): –H0: μ 0 –H1: μ< 0


Herunterladen ppt "Hypothesen - 1 Prüfung statistischer Hypothesen Die inferenzstatistische Hypothesenprüfung erlaubt Aus- sagen über Hypothesen in einer Population, aus."

Ähnliche Präsentationen


Google-Anzeigen