Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

TU Chemnitz Institut für Sportwissenschaft Prof. Dr. Siegfried Nagel Forschungsmethoden der Sportwissenschaft 3. Grundlagen der Datenerhebung – Auswahlverfahren.

Ähnliche Präsentationen


Präsentation zum Thema: "TU Chemnitz Institut für Sportwissenschaft Prof. Dr. Siegfried Nagel Forschungsmethoden der Sportwissenschaft 3. Grundlagen der Datenerhebung – Auswahlverfahren."—  Präsentation transkript:

1 TU Chemnitz Institut für Sportwissenschaft Prof. Dr. Siegfried Nagel Forschungsmethoden der Sportwissenschaft 3. Grundlagen der Datenerhebung – Auswahlverfahren – Untersuchungspläne/-designs SS 2008

2 © Nagel Der Forschungsprozess bei empirisch- analytischen Untersuchungen (1) nach Rogge (1995) Theorie Erhebungsmethoden Untersuchungsplan Operationalisierung Hypothesen Modelle Wissenschafts- theorie Messtheorie Testtheorie Anregung Alltags- wissen Literatur und Experten

3 © Nagel Wissenschaftliche Hypothesen Unter einer Hypothese versteht man eine theoretische Vermutung bzw. Annahme über die Zusammenhänge von interessierenden Sachverhalten. Kriterien für eine wissenschaftlichen Hypothese (WH): WH ist eine allgemeingültige, über den Einzelfall oder ein singuläres Ereignis hinausgehende Behauptung über einen realen Sachverhalt (Allsatz). Einer WH muss zumindest implizit die Formalstruktur eines sinnvollen Konditionalsatzes (Wenn-dann-Satz, Je-desto-Satz) zu Grunde liegen. Der Konditionalsatz muss potentiell falsifizierbar sein. D. h., es müssen Ereignisse denkbar sein, die dem Konditionalsatz widersprechen.

4 © Nagel Der Forschungsprozess bei empirisch- analytischen Untersuchungen (2) Durchführung der Untersuchung Ergebnisse Statistische Hypothesen Interpretation Statistische Operationen Datenaufbereitung und erste Ergebnisse Grundzüge der Statistik Dokumen- tation und Publikation

5 © Nagel Grundlagen der Datenerhebung/ Auswahlverfahren - Überblick - -Variablenbegriff und Variablenarten -Messtheoretische Probleme -Skalentypen -Grundgesamtheit vs. Stichprobe, Stichprobenerhebungstechniken

6 © Nagel – Ein einführendes Beispiel – Problem: –Anfrage Dekanat: Wirksamkeit von Tutorien (zu Vorlesungen) für den Lernerfolg im Studium –Anlass: Einführung neuer Studiengänge (BA, MA) –Frage: Macht es Sinn, begleitende Tutorien/Übungen als Pflichtbestandteile des Studiums aufzunehmen? –Hintergrund: Knappheit der personellen und finanziellen Mittel

7 © Nagel Konzeptspezifikation / Operationalisierung Die (eindeutige) Konkretisierung theoretischer Begriffe auf der empirischen Ebene nennt man Operationalisierung. Die Klärung der Begriffe (= hypothetische Konstrukte) auf der theoretischen Ebene bezeichnet man als Konzeptspezifikation. Begriff 1Begriff 2 Messwert 1Messwert 2 Theoretische Ebene: Empirische Ebene Operationalisierung

8 © Nagel Variablenbegriff und Variablenarten Unter einer Variable versteht man ein Merkmal,... das an Untersuchungseinheiten beobachtet, erfragt oder gemessen wird. das (im Gegensatz zu einer Konstanten) in mindes- tens zwei Abstufungen vorkommen kann. Variablenarten –Qualitative vs. quantitative Variablen –Abhängige vs. unabhängige Variablen –Diskrete vs. stetige Variablen

9 © Nagel Messtheoretische Probleme (1) Eine Messung ist eine Abbildung (im mathematischen Sinne), die den Eigenschaften der Untersuchungseinhei- ten (empirisches Relativ) entsprechende Zahlwerte (numerisches Relativ) zuordnet (ER NR).

10 © Nagel Messtheoretische Probleme (2) Beispiel: Augenfarbe zu untersuchende Zahlenwert: Eigenschaft der UE: blau 1 grün2 braun3 Sonstige4 empirisches Relativnumerisches Relativ

11 © Nagel Messtheoretische Probleme (3) Messung in den Naturwissenschaften Bestimmung eines Messwertes als Vielfaches oder Teil einer Maßeinheit (z.B. cm, kg, sec) Messung im engen Sinne Messung in den Sozialwissenschaften Zuordnung von Zahlen (Zeichen) zu Objekten oder Ereignissen gemäß Regeln (z.B. Erfassung des Geschlechts und Zuordnung der Zahlenwerte w=1 und m=2) Messung im weiten Sinne, Skalierung

12 © Nagel Skalentypen (1) Es lassen sich folgende Skalentypen unterscheiden: –Nominalskala (Kategorialskala) –Ordinalskala –Intervallskala –Verhältnisskala (Rationalskala) Kardinalskala

13 © Nagel Skalentypen (2) Nominalskala –Wenn man bei Merkmalsausprägungen nur Gleichheit und Verschiedenheit betrachten kann ( =, ), handelt es sich um ein nominalskaliertes Merkmal. –Beispiel: Studienfächer, Augenfarbe, Geschlecht Ordinalskala –Wenn man die Merkmalsausprägungen zusätzlich in einer sinnvolle Reihenfolge anordnen kann ( >, < ), handelt es sich um ein ordinalskaliertes Merkmal. –Beispiel: Tabellenplätze im Fußball

14 © Nagel Skalentypen (3) Intervallskala –Wenn man zusätzlich aus gleichen Abständen im numerischen Relativ auf gleiche Abstände im empirischen Relativ schließen kann, handelt es sich um ein intervallskaliertes Merkmal. –Beispiel: Grad Celsius Verhältnisskala –Wenn zusätzlich der Nullpunkt im numerischen Relativ mit dem Nullpunkt im empirischen Relativ überein- stimmt, man also Verhältnisse bilden kann, handelt es sich um ein verhältnisskaliertes Merkmal. –Beispiel: Körpergröße

15 © Nagel Skalentypen (4) =, =

16 © Nagel Grundgesamtheit und Stichprobe (1) Unter der Grundgesamtheit (Population) versteht man alle Untersuchungseinheiten, die ein oder mehrere gemeinsame Merkmale aufweisen Eine Stichprobe stellt eine Teilmenge aller Unter- suchungseinheiten dar, die die untersuchungsrelevan- ten Eigenschaften der Grundgesamtheit möglichst genau abbilden soll (Miniaturbild der Grundgesamtheit).

17 © Nagel Grundgesamtheit und Stichprobe (2) Je genauer die Stichprobe die Grundgesamtheit repräsentiert, desto präziser sind die (inferenzstatistischen) Aussagen über die Population. Die Qualität der Stichprobe wird durch die Art des Auswahlver- fahrens beeinflusst. Bei der Auswahl der Untersuchungsstichprobe sind folgende Aspekte zu beachten: –Werden alle Elemente der Grundgesamtheit untersucht? –Werden die Elemente nach festen Regeln ausgewählt? –Basieren die Regeln auf einem Zufallsprozess? –Wird die Grundgesamtheit vor der Ziehung (Zufallsauswahl) in homogene Gruppen eingeteilt?

18 © Nagel Auswahlverfahren (1) Teilerhebung probabilistische Stichproben Nicht-probabilistische Stich- proben Mehrstufige Aus- wahlverfahren Einstufige Aus- wahlverfahren Ad-hoc- Stichproben Theoretische Stichproben typische Fälle extreme Fälle Konzentrationsprinzip Schneeballverfahren Quotenauswahl nicht-geschichtete Auswahlverfahren einfache Zufallsstichprobe Klumpenstichprobe geschichtete Auswahlverfahren proportional geschichtete Stichprobe disproportional geschichtete Stichprobe Grundgesamtheit / Population Totalerhebung

19 © Nagel Auswahlverfahren (2) – Kriterien Werden alle Elemente der Grundgesamtheit untersucht? –ja Vollerhebung –nein Teilerhebung (Stichprobenauswahl) Falls nein, basiert die Auswahl auf einem Zufallsprozess? –nein bewusste Auswahl (z.B. typischer/extremer Fälle) Die Ad-hoc-Stichprobe ist ein wissenschaftlich unzulässiges Verfahren, das sehr häufig aus ökonomischen Gründen statt einer Zufallsauswahl verwendet wird. –ja Wahrscheinlichkeitsauswahl (Zufallsstichprobe/ probabilistische Stichprobe)

20 © Nagel Auswahlverfahren (3) – Kriterien Falls ja, werden mehrere Auswahlverfahren aneinandergekoppelt? –ja mehrstufige Auswahlverfahren –nein einstufiges Auswahlverfahren Falls nein, wird die Grundgesamtheit vor der Ziehung (Zufallsauswahl) in homogene Gruppen eingeteilt? –nein nicht geschichtetes Auswahlverfahren –ja geschichtetes Auswahlverfahren

21 Untersuchungsdesigns - Überblick - –Untersuchungspläne zur Überprüfung von Hypothesen –Experiment –Arten von Variablen bei hypothesenprüfenden Untersuchungen –Max-Kon-Min-Prinzip –Diskussion von Störvariablen –Untersuchungsdesigns bei Fragestellungen zur Entwicklung und Sozialisation

22 © Nagel Klassifikationsschema empirischer Untersuchungen Empirische Untersuchungen in den Sozialwissenschaften beschreibende Untersuchungen (Populationsbeschreibung, Hypothesenerkundung) hypothesenprüfende Untersuchungen Korrelationsstudie Quasi- experimentell Experimentell Ex-post-facto- Anordnung Feldstudien Experimentelle Designs

23 © Nagel Definition des Begriffs Experiment Untersuchungsanordnungen (Designs, U.pläne, U.formen), die der Überprüfung von Hypothesen dienen, nennt man Experiment. Eine Versuchsanordnung wird dann als (echtes Experiment) bezeichnet, wenn - durch die (willkürliche) Setzung des Treatments (unabhängige Variable) unterschiedliche Situationen zwischen Kontroll- und Versuchsgruppe hergestellt werden, - diese Versuchsbedingungen mit Hilfe der Techniken der Elimination, der Konstanthaltung, der Parallelisierung und der Randomisierung kontrolliert werden. Ziel eines Experiments: Nachweis, dass Veränderungen der abhängigen Variable (AV) möglichst eindeutig auf Veränderungen der unabhängigen Variable (UV) zurückzuführen sind.

24 © Nagel Arten von Variablen bei Untersuchungen zur Klärung von Wenn-Dann-Beziehungen abhängige Variable (Resultante) (AV) Variablen, deren Abhängigkeit von der unabhängigen Variablen Gegenstand der Untersuchung ist. unabhängige Variable (Determinante, Treatment=T) (UV) Ihr Einfluss auf die abhängige Variable soll untersucht werden; sie werden vom Versuchsleiter (mehr oder weniger) planmäßig variiert. Störvariablen (S) Alle Variablen, die sonst noch einen Einfluss auf die abhängige Variable haben.

25 © Nagel Experimentelle Untersuchungsdesigns (vgl. Bös et al. 2000) 1.Einmalige Messung einer Gruppe 2.Vergleich Versuchs- und Kontrollgruppe 3.Vorher-Nachher-Messung einer Gruppe (naturwissenschaftliche Versuchsanordnung) Problem: Störvariablen, die ebenfalls einen Einfluss auf die AV haben Beeinträchtigung der Aussagekraft

26 © Nagel Störvariablen bei experimentellen Designs Zeiteinflüsse (zwischen Pre- und Post-Test) Reifungs- und Lernprozesse Testeffekte Veränderung der Messinstrumente und Hilfsmittel Ausfälle Reaktive Effekte der experimentellen Situation Statistische Regression

27 © Nagel Kontrolle der Störvariablen klassische Kontrollgruppen-Anordnung: Eliminierung Konstanthaltung Randomisierung Parallelisierung Umwandlung: Störvariable in unabhängige Variable Falls keine Randomisierung möglich: Quasi-Experiment

28 © Nagel Modifizierte Kontrollgruppenanordnung Zwei Versuchs- und zwei Kontrollgruppen: (vgl. Singer & Willimczik, 2002).

29 © Nagel Max- Kon- Min- Prinzip der Versuchsplanung (vgl. Bös et al. 2000) MAXimiere die Primärvarianz KONtrolliere die Sekundärvarianz MINimiere die Fehlervarianz Gesamtvarianz der AV Erwünschte Varianz Unerwünschte Varianz Primär- varianz Sekundär- varianz Fehler- varianz UV Störvariablen Meßfehler etc. MAXMINKON = +

30 © Nagel Überblick Untersuchungspläne (vgl. Bös et al. 2000) Untersuchungs pläne Kriterien Beispiele Systemati- sche Be- obachtung Manipula- tion der UV Kontrolle der Bedin- gungen Experimentelle+++ Randomisierungspläne Blockpläne Quasi- experimentelle ++? Vorgegebene Gruppen mit Vorher- Messung Zeitreihen Ex-post-facto+-- Ex-post-facto-Anordnung Korrelativer Plan

31 © Nagel Zum Gültigkeitsanspruch der Untersuchungsbefunde experimentellquasi-experimentell Feldhohe externe Validität hohe interne Validität hohe externe Validität geringe interne Validität Laborgeringe externe Validität hohe interne Validität geringe externe Validität geringe interne Validität Interne Validität: Variation der abhängigen Variablen kann eindeutig auf die (manipulative) Variation der unabhängigen Variablen zurückgeführt werden. Externe Validität: Maß, in welchem die experimentellen Resultate auf andere Stichproben von Versuchspersonen, andere situative und örtliche Gegebenheiten und Randbedingungen generalisiert werden können.

32 © Nagel Untersuchungsdesigns in der Entwicklungs- psychologie und Sozialisationsforschung Ziel:Messung von Veränderungen einer AV über mehrjährigen Zeitraum (UV in der Regel nicht manipulierbar; Ex-post-facto- Design) (1)Querschnittsplan: Messung von Gruppen unterschiedlichen Alters ( Vergleich von Altersgruppen) Problem: keine Messung individueller Veränderungen (2)Längsschnittplan: mehrfache Messung der gleichen Gruppe Problem: - Länge des Untersuchungszeitraums - Stichprobenausfälle - Konfundierung Alterns- und Testzeiteffekte Panel (prospektiver Längsschnittplan): festgelegte, gleichbleibende Menge von Erhebungseinheiten, bei denen über einen längeren Zeitraum wiederholt die gleichen Merkmale erhoben werden.

33 © Nagel Kohortenanalytischer, retrospektiver Längsschnitt (1) Kohorte: Menge von Individuen, die zu einer bestimmten Zeit (z.B. Kalenderjahr) ein bestimmtes Ereignis erfahren haben. Kalenderjahr Jahrgang/ Kohorte Querschnitt Retrospektiver Längsschnittschnitt (vgl. Conzelmann 1997)

34 © Nagel Kohortenanalytischer, retrospektiver Längsschnitt (2) Problem retrospekiver Analyse: Mangelndes Erinnerungsvermögen Vorteil Kohortendesign: Gleichzeitige Erfassung von (1) Alterseffekten (2) Kohorteneffekten (3) Periodeneffekten

35 © Nagel Evaluationsforschung Evaluationsforschung: systematische Anwendung empirischer Forschungsmethoden zur Bewertung eines Konzeptes, Untersuchungsplanes, der Implementierung und der Wirksamkeit sozialer Interventionsprogramme. Das Erkenntnisinteresse der Evaluationsforschung ist insoweit begrenzt, als lediglich der Erfolg oder Miss- erfolg einer Maßnahme interessiert.

36 © Nagel Übungsaufgaben und Literatur Grundlagen der Datenerhebung – Auswahlverfahren (1)Die Beliebtheit des Hochschulsports an der TU Chemnitz soll ermittelt werden. Dazu sollen 1000 Studierende befragt werden. Wie wäre die Stichprobenziehung für (a) eine einfache Zufallsstichprobe (b) eine Klumpenstichprobe (c) ein geschichtetes Auswahlverfahren (d) ein mehrstufiges Auswahlverfahren zu gestalten? (e) Wann würde man von einer Ad-hoc-Stichprobe sprechen? (f) Welches Verfahren würden Sie empfehlen? Benennen Sie Vor- und Nachteile des von Ihnen genannten Verfahrens. (2)Ordnen Sie den folgenden Variablen (Messungen) das höchstmögliche Skalenniveau zu, und begründen Sie Ihre Zuordnung: Bootsklasse im Rudern, Tabellenplatz in der Handball-Bundesliga, Marathonlaufzeit, Durchschnittsgeschwindigkeit beim Marathonlauf, Spielposition beim Volleyball, Laktatkonzentration beim Stufentest auf dem Laufbandergometer. Haag, G. (1999). Deskriptive Statistik. In B. Strauß, H. Haag, & M. Kolb (Hrsg.), Datenanalyse in der Sportwissenschaft. Hermeneutische und statistische Verfahren (S ). Schorndorf: Hofmann. Singer, R. (2002). Verfahren zur Festlegung von Stichproben. In R. Singer & K. Willimczik (Hrsg.), Sozialwissenschaftliche Forschungsmethoden in der Sportwissenschaft (S ). Hamburg: Czwalina.

37 © Nagel Übungsaufgaben und Literatur Untersuchungsdesigns 1.Sie möchten die Hypothese Kohlenhydratreiche Ernährung erhöht die Ausdauerleistungsfähigkeit prüfen. Nennen Sie AV und UV. Welche Störvariablen sind bei der Untersuchungsplanung zu beachten? 2.Eine Sportlehrerin möchte überprüfen, inwieweit unterschiedliche Lernmethoden (Lehrweg 1: ganzheitlich, Lernen am Modell, Verlaufsbeschreibung; Lehrweg 2: Teilmethode, Übungsreihe) bei verschiedenen Altersgruppen (Schulkinder, Jugendliche) zu unterschiedlichen Erfolgen beim Erlernen des Jonglierens führen. Beschreiben Sie einen geeigneten Untersuchungsplan zur Beantwortung dieser Fragestellung. 3.Wie kann bei dem in Frage 2 entworfenen Untersuchungsplan die interne bzw. die externe Validität erhöht werden (Begründung)? 4.Entwerfen Sie ein Untersuchungsdesign zur Analyse der Entwicklung motorischer Fähigkeiten von Kindern im Alter zwischen 6 und 12 Jahren. Ergänzende Literatur: Singer, R. & Willimczik, K. (2002). Versuchsplanung. In R. Singer & K. Willimczik (Hrsg.), Sozialwissenschaftliche Forschungsmethoden in der Sportwissenschaft (S ). Hamburg: Czwalina.


Herunterladen ppt "TU Chemnitz Institut für Sportwissenschaft Prof. Dr. Siegfried Nagel Forschungsmethoden der Sportwissenschaft 3. Grundlagen der Datenerhebung – Auswahlverfahren."

Ähnliche Präsentationen


Google-Anzeigen