Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Kapitel 11 - Wellen 11. Wellenlehre 11.1 Harmonische Wellen Definition: Gebilde, die harmonische Schwingungen ausführen können, bezeichnet man als harmonische.

Ähnliche Präsentationen


Präsentation zum Thema: "Kapitel 11 - Wellen 11. Wellenlehre 11.1 Harmonische Wellen Definition: Gebilde, die harmonische Schwingungen ausführen können, bezeichnet man als harmonische."—  Präsentation transkript:

1

2 Kapitel 11 - Wellen 11. Wellenlehre 11.1 Harmonische Wellen Definition: Gebilde, die harmonische Schwingungen ausführen können, bezeichnet man als harmonische Oszillatoren. Kopplung gleichartiger harmonischer Oszillatoren durch Kopplungskräfte: Versuch mit Wellenmaschine: Die einzelnen Oszillatoren führen, um einen bestimmten Zeitabschnitt verschoben, gleiche Schwingungen aus.

3 Kapitel 11 - Wellen Wir verwenden wieder die übliche mathematische Orientierung: y.... Schwingungsrichtung des einzelnen Oszillators. x.... Fortpflanzungsrichtung der Schwingungsbewegung. Eine Welle entsteht, wenn eine Reihe gekoppelter Oszillatoren nacheinander gleichartige Schwingungen ausführt. Wir unterscheiden: Transversalwelle: Die Schwingungsrichtung (der Oszillatoren) steht normal auf die Fortpflanzungsrichtung. Longitudinalwelle: Die Schwingungsrichtung (der Oszillatoren) steht parallel zur Fortpflanzungsrichtung.

4 Kapitel 11 - Wellen Beispiel für Transversalwellen: Wellenmaschine. Beispiel für Longitudinalwellen: Schallwellen in Luft. Begriffe: Amplitude der Welle=Amplitude des Oszillators Schwingungsdauer der Welle = Schwingungsdauer des Oszillators Frequenz der Welle=Frequenz des Oszillators Elongation der Welle=Elongation des Oszillators Neue Begriffe: Versuch: Langsames Hin- und Herbewegen des ersten Oszillators: Schnelles Hin- und Herbewegen des ersten Oszillators: Ergebnis: Die Entfernung zweier Wellenberge ändert sich.

5 Kapitel 11 - Wellen λ... Wellenlänge = Abstand zweier Wellen- berge, bzw. Abstand zweier benach- barter gleichartiger Schwingungszustände. bei Longitudinalwellen: Abstand zweier Verdichtungen. Grundgleichung der Wellenlehre: c … Fortpflanzungsgeschwindigkeit der Welle. Beachte: c ≠ v (v.... Geschwindigkeit des Oszillators)

6 Kapitel 11 - Wellen Mathematische Behandlung der Wellenbewegung: Ausgangspunkt: harmonische Schwingung: y = y 0 ·sin t Im Ort x beginnt die Schwingung um die Zeit t x später. für Ort x = 0: für den Ort x: wir setzen : ω = 2π/T

7 Kapitel 11 - Wellen Wellengleichung: Dabei gibt die zeitliche Periodizität, die räumliche Periodizität an. Diskussion: für x = konst. : Jeder Schwingungszustand an der Stelle x kann berechnet werden. Videokamera mit Schlitzblende. für t = konst. : Für einen bestimmten Zeitpunkt wird eine räumliche Aufnahme gemacht. (Schnappschuss mit Fotoapparat).

8 Kapitel 11 - Wellen Aufgabe: Mache für die Zeitpunkte: t = 0 s; t = T/8 s; t = T/4 s; t = 3T/8 s;... 7T/8 s; t = T s Momentaufnahmen an den Orten x = 0; x = 1 cm; x = 2 cm;... x = 8 cm c=8 cm/s; T = 1 s; y 0 = 1 cm Damit ergibt sich als Wellengleichung:

9 Kapitel 11 - Wellen Ort Zeitpunkte Entstehung einer Welle λ = c∙T

10 Kapitel 11 - Wellen

11 Überlagerung von Wellen: Versuch: Mit einer Installationsfeder erzeugen wir am einen Ende eine waagrechte Querstörung, mit dem anderen eine senkrechte Querstörung. Etwa in der Mitte treffen sich die beiden. Zwei Wellen laufen übereinander hinweg ohne sich gegenseitig zu beeinflussen. An der Überlagerungsstelle erhält man die Elongation der resultierenden Welle durch vektorielle Addition der El. der Einzelwellen.

12 Kapitel 11 - Wellen Begriffe: Schwingungsebene einer Transversalwelle: = Ebene, die von der Schwingungsrichtung und der Fortpflanzungsrichtung festgelegt ist. Gangunterschied zweier harmon. Wellen mit gleicher Wellenlänge: = Abstand, um den die erste Welle vor der zweiten herläuft. Beispiel: Überlagerung zweier harmonischer Wellen mit gleicher Schwingungsebene: a) Gangunterschied d = 0 Konstruktive Interferenz ( Verstärkung ) Destruktive Interferenz ( Auslöschung ) b) Gangunterschied d = λ/2

13 Kapitel 11 - Wellen Die Schwebung: Versuch: Zwei Stimmgabeln, von denen die eine leicht verstimmt ist anschlagen. Mit Mikrophon und Oszillograph aufzeichnen ( Coach6-Versuch). Ergebnis: Wir hören Lautstärkeschwankungen. Eine Schwebung tritt auf, wenn sich zwei Wellen mit "benachbarten" Frequenzen überlagern.

14 Kapitel 11 - Wellen Die Schwebung: 8Hz 9Hz

15 Kapitel 11 - Wellen Mathematische Behandlung: Wir halten einen Ort x fest und können daher nur die Schwingungen an diesem Ort betrachten. Weitere Vereinfachung: die beiden Amplituden seien gleich groß y 0. Einzelschwingungen: Zweiter Summensatz: Bewirkt Amplituden- schwankung bewirkt die Tonhöhe des gehörten Tones ( Mittelwert der Frequenzen der Einzeltöne. Die Schwebungsfrequenz errechnet sich aus: Schwebungsgleichung

16 Kapitel 11 - Wellen Anwendung der Schwebung: Stimmen von Musikinstrumenten Reine Schwebung, wenn die Amplituden der beiden Tonerzeuger gleich groß sind, sonst unreine Schwebung.

17 Kapitel 11 - Wellen Fourier-Analyse Jede Welle lässt sich eindeutig aus harmonischen Wellen zusammensetzen. f(x) = A 0 + A 1 sinx + A 2 sin2x + A 3 sin3x B 1 cosx + B 2 cos2x + B 3 cos3x +... x... Grundfrequenz 2x, 3x, 4x,.... Oberfrequenzen Zerlege die Rechteckwelle in eine Summe harmonischer Wellen!

18 Kapitel 11 - Wellen

19 11.2 Reflexion von Wellen Versuch: Mit Installationsfeder Störung von einem Ende zum anderen schicken. 1. festes Ende: Wellenberg wird als Wellental reflektiert und umgekehrt. Es tritt ein Phasensprung auf. Ist das Ende befestigt, kann das letzte Teilchen der Feder keine Schwingung senkrecht zur Feder ausführen. Kommt also ein Wellenberg an, so führen bereits die vorletzten Teilchen die ihnen nach oben erteilte Schwingung nicht voll aus, denn das feste Ende übt einen Zug nach unten auf sie aus, durch den sie einen Bewegungsantrieb nach unten erfahren. → Wellental.

20 Kapitel 11 - Wellen 2. loses Ende: Wellenberg wird als Wellenberg reflektiert. Kein Phasensprung. Ist das Ende lose, kann das letzte Teilchen der Feder die Schwingung senkrecht zur Feder voll ausführen. So als ob man diesem Teilchen eine ruckartige Bewegung nach oben erteilt hätte, die als Wellenberg zurückwandert.

21 Kapitel 11 - Wellen Entstehung stehender Wellen t = 0 K K B B B Eine Welle kommt von links, die andere von rechts. Die beiden überlagern sich. Situation wie in einem begrenzten Medium. Erkenntnis: Stehende Wellen entstehen nur in begrenzten Medien, wenn sich die Welle und die an der Mediengrenze reflektierte Welle überlagern. Es können sich dabei nur Wellen mit bestimmten Frequenzen (Eigenfrequenzen) ausbilden Stehende Wellen

22 Kapitel 11 - Wellen Stehende Transversalwelle Führe folgende Schülerversuche zur stehenden Welle aus: Erregermotor wird an den Funktionsgenerator angeschlossen. (Sinus; x10; Amplitude ca. 0,5) Frequenz langsam steigern, bis der Gummifaden in der Mitte besonders stark schwingt.

23 Kapitel 11 - Wellen Überprüfe die Ergebnisse mit folgender Berechnung: Abstand zweier Knoten beträgt λ/2. und Frequenzen der stehenden Welle Zu f 2 :

24 Kapitel 11 - Wellen Überprüfe die Ergebnisse mit folgender Berechnung: Abstand zweier Knoten beträgt λ/2. und Frequenzen der stehenden Welle Zu f 2 : f 1 = f 2 = f 3 = Länge l f 4 =

25 Kapitel 11 - Wellen Seilschwingungsgerät Seilwellen f1=f1= f 2 =2·f 1 f 3 =3·f 1 f 4 =4·f 1 c= 1 ·f 1 1 =2·l

26 Kapitel 11 - Wellen Stehende Longitudinalwelle Der Hebel des Schwingungserregers wird mit einem Gummi waagrecht gespannt, die Schraubenfeder wird in diesem Hebel eingehängt. Verändere die Frequenz so, dass eine stehende Longitudinalwelle entsteht! Auch hier ist zu erkennen, dass sich nur bei ganz bestimmten Frequenzen stehende Wellen ausbilden.

27 Kapitel 11 - Wellen Beispiele für stehende Wellen: Saiten bei Saiteninstrumenten Hier gilt eine empirische Formel: l... Länge der Saite F... Spannkraft ρ...Dichte des Saitenmaterials A... Querschnitt des Saitenmat.

28 Kapitel 11 - Wellen Stehende Wellen in Luftsäulen: Versuch: Der Kolben wird so lange verschoben, bis ein lauter Ton hörbar ist. 1. Ergebnis: l = 19 cm 2. Ergebnis: l = 57 cm (also das dreifache) Am festen Ende ist stets ein Knoten, am offenen ein Bauch. Daher ist das erste Ereignis folgendermaßen anzugeben: Daraus lässt sich die Schallgeschwindigkeit in Luft berechnen: c = 4·l·f c = 4·0,19·440 =334,4m/s

29 Kapitel 11 - Wellen Gedeckte und offene Pfeifen Frequenz bei gedeckter Pfeife: Frequenz bei offener Pfeife: Funktion der Zungenpfeife: Die Zunge schwingt mit ihrer Eigenfrequenz und regt dadurch die Luftsäule zu periodischen Schwingungen an. Beispiele: Mundharmonika, Oboe, Fagott, Klarinette

30 Kapitel 11 - Wellen Funktion der Lippenpfeife: Die Luft wird durch den Spalt gegen die Lippe geblasen. Die Luftwirbel dringen teilweise in die Pfeife ein und bringen die Luftsäule zum Schwingen. Die Schwingungen steuern nun die Wirbelablösung periodisch.

31 Kapitel 11 - Wellen Ende Offene und gedeckte Pfeifen Offene PfeifenGedeckte Pfeifen f1=f1= f 2 =2·f 1 f 3 =3·f 1 f 4 =4·f 1 f1=f1= f 2 =3·f 1 f 3 =5·f 1 f 4 =7·f 1

32 Kapitel 11 - Wellen Orgel

33 Kapitel 11 - Wellen Ausbreitung von Wellen Huygenssches Prinzip Dabei geht es um ein Modell zur Ausbreitung von Wellen. Ein sich periodisch bewegender Stift erregt konzentrische Wellen. Da sie von einem Punkt ausgehen werden sie Elementarwellen bezeichnet. Die Punkte gleicher Schwingungsphase werden als Wellenflächen bezeichnet.

34 Kapitel 11 - Wellen Wellenvorgänge

35 Kapitel 11 - Wellen Versuche: Bei beiden Versuchen: Die Öffnung wird zum Ausgangspunkt einer Elementarwelle. Huygenssches Prinzip: Jeder Punkt einer Wellenfläche ist Ausgangspunkt einer Elementarwelle. Die Einhüllende der Elementarwelle ergibt eine neue Wellenfläche.

36 Kapitel 11 - Wellen Reflexion von Wellen: Die Dreiecke ACC" und C"A"A sind ähnlich. Da sogar die Strecken gleich lang sind, sind sie kongruent und daher: α = α´ Reflexionsgesetz Einfallender und reflektierter Wellenstrahl schließen mit der Normale zur Wand gleiche Winkel ein. Einfallender und reflektierter Wellenstrahl liegen mit der Normalen in einer Ebene.

37 Kapitel 11 - Wellen Brechung von Wellen Ein Modell wäre: Auto kommt mit der einen Seite aufs Bankett, dadurch wird es auf einer Seite abgebremst, es erfährt eine Richtungsänderung. Brechungsgesetz von Snellius c 1 ·t

38 Kapitel 11 - Wellen Interferenz von Wellen Versuch mit Wellenwanne: Zwei punktförmige Erreger schwingen gleichphasig.

39 Kapitel 11 - Wellen Ergebnis: Wo zwei Wellenberge, bzw. zwei Täler zusammentreffen, kommt es zur Verstärkung. Verstärkung: Auslöschung: Zwei gleichartig erregte Wellen löschen einander im Punkt P aus, wenn ihr Gangunterschied ein ungerades Vielfaches der halben Wellenlänge ist. Sie verstärken sich, wenn ihr Gangunterschied ein Vielfaches der Wellenlänge ist. Dasselbe Ergebnis wird erzielt, wenn statt der zwei Erreger zwei Spalte verwendet werden, auf die von der einen Seite eine ebene Welle läuft. Konfokale Hyperbeln

40 Kapitel 11 - Wellen Beugung von Wellen Versuch mit Wellenwanne: Verschieden breite Spalte. Ergebnis: Hinter dem Spalt ist kein scharf begrenzter Schattenraum. Die Abweichung von der geradlinigen Ausbreitung nennt man Beugung. Dabei kommt es auf das Verhältnis zwischen Wellenlänge und Spaltöffnung (Hindernisgröße) an. Beugungsbedingung:

41 Kapitel 11 - Wellen Beispiel: Schallwellen: Versuch: Man kann um die Ecke herum hören, aber nicht sehen. Berechne die Wellenlänge für Schallwellen für 100Hz, 1000Hz, 3000Hz Erkenntnis: bei höheren Frequenzen haben wir Richtwirkung. Wichtig bei Beschallung: (Kalottenhochtöner)

42 Kapitel 11 - Wellen 11.5 Akustik Schallwellen sind in Gasen und in Flüssigkeiten Longitudinalwellen. In festen Körpern treten wegen der Kopplungskräfte auch Transversalwellen auf. Die Schallgeschwindigkeit hängt vom Medium ab. MediumSchallgeschwindigkeit Luft bei 0°C331m/s Luft bei 20°C343m/s Wasserstoff1300m/s Wasser1485m/s

43 Kapitel 11 - Wellen

44 Versuch mit Lochsirene: Bläst man nur eine Reihe an und erhöht die Winkelgeschwindigkeit, so wird der Ton höher. Die Tonhöhe wird durch die Frequenz der Schallwelle festgelegt. Bläst man alle vier Lochreihen an, so hört man eine bestimmte Tonfolge (Dreiklang + Oktave). Die Charakteristik dieser Tonfolge ändert sich auch bei Erhöhung der Winkelgeschwindigkeit nicht. Das Intervall zweier Töne wird durch das Frequenzverhältnis festgelegt.

45 Kapitel 11 - Wellen Festlegung des Kammertones a': f(a') = 440Hz c'd'e'f'g'a'h'c" /85/44/33/25/315/82 10/916/159/810/99/816/15 Dur-Tonleiter Bei der Violine ergeben sich für die beiden Töne des und cis verschiedene Frequenzen. Beim Klavier ist das nicht möglich. → temperierte Stimmung. Man unterteilt die Oktave in 12 gleichwertige Halbtonschritte. Das Frequenzverhältnis zweier Halbtonschritte beträgt q = = 1, c'd'e'f'g'a'h'c" q² q q

46 Kapitel 11 - Wellen Begriffe Ton: wird durch eine sinusförmige Schwingung erzeugt. Frequenzspektrum: Klang: Ist eine beliebige nicht sinusförmige periodische Schwingung. Nach Fourier ist sie zerlegbar in eine Summe von harmonischen Tönen. Die Frequenzen dieser Töne verhalten sich zueinander ganzzahlig. Analyse eines Klanges: Mikrophon und Filter. Vgl. Versuche zu Fourier Frühere Methode: Helmholtzsche Resonatoren. (Bei Erregerfrequenz = Eigenfrequenz ist die Empfindung am größten.

47 Kapitel 11 - Wellen Geräusch: Die enthaltenen Frequenzen unterliegen keiner Gesetzmäßigkeit. Unperiodischer Vorgang. Frequenzspektrum: Knall: enthält kurzzeitig alle Frequenzen eines großen Bereichs Schallarten: Infraschall: <16Hz ; tritt bei Erdbeben, bei fahrenden Autos mit leicht geöffnetem Fenster auf. (sehr unangenehm) Hörschall: 16Hz - 20kHz (= Hörbereich des Menschen; obere Grenze nimmt mit dem Alter ab. Versuch: Hörbereich testen.

48 Kapitel 11 - Wellen (vgl. Basiswissen 6RG Abb )

49 Kapitel 11 - Wellen Schallerzeugung Hz Schallwahrnehmung – Hz 85 – Hz 30 – Hz 15 – Hz 450 – – Hz – Hz 400 – Hz 50–150kHz – Hz – HZ Schallwahrnehmung und -erzeugung

50 Kapitel 11 - Wellen Ultraschall: > 20kHz Erzeugung mit Galtonpfeife; Inverser piezoelektrischer Effekt; Magnetostriktion (Längenänderung von Nickel bei Anlegen eines wechselnden Magnetfeldes) Lies dazu B. S. 89

51 Kapitel 11 - Wellen PiezoeffektPiezoeffekt Piezoeffekt Deformation erzeugt Spannung. Eine angelegte Spannung bewirkt eine Deformation.

52 Kapitel 11 - Wellen Titel: Ultraschall

53 Kapitel 11 - Wellen Materialkontrolle Materialprüfung PVC-RohrPVC-Rohr mit einer Fehlstelle Frequenz 5MHz, Signalgeschwindigkeit ca. 2000m/s

54 Kapitel 11 - Wellen In den Ultra Clean®-Reinigungsanlagen erzeugen Hochleistungs HF- Generatoren über PZT-Schwinger mikroskopisch kleine Kavitationsblasen in der wässrigen Reinigungsflüssigkeit. Im Inneren der Kavitationsblasen entsteht für Mikrosekunden ein extremes Vakuum und Temperaturen bis zu 5000 °C. Bei der anschließenden Implosion der Kavitationsblase werden gewaltige Energien freigesetzt. Diese wirken wie Billionen Mikrobürsten, die bis zu mal pro Sekunde das Reinigungsgut bearbeiten. Eine vielfach vergrößerte Kavitationsblase im Moment ihrer Implosion. Ultraschallreinigung

55 Kapitel 11 - Wellen Untersuchung Ultraschall-Untersuchung bei Schwangeren

56 Kapitel 11 - Wellen 12 Wochen (5cm)17 Wochen (10cm) 12 und 17 Wochen

57 Kapitel 11 - Wellen 20 WochenHerz 20 Wochen – Herz Daumenlutscher FußRückgraterhobener Zeigefinger Zwillinge

58 Kapitel 11 - Wellen Nabelschnur Ende Ultraschall Doppler  Objekt bewegt sich auf Welle zu  Objekt entfernt sich von der Welle  Frequenz erhöht sich  Frequenz vermindert sich

59 Kapitel 11 - Wellen Empfindlichkeit des menschlichen Gehörs: Schallstärke ist jene Energie, die je Sekunde in senkrechter Richtung durch 1 Quadratmeter tritt. Der Schwellenwert liegt bei W/m². Die Schallstärke ist ein absolutes Maß. Da die Schallstärke von Schallereignissen sich über mehrere Zehnerpotenzen erstreckt, wird ein relatives Maß eingeführt. (Man kommt zu handlichen Zahlen. Schallpegel L ist das Verhältnis der Schallstärke zur Bezugsschallstärke. Maß von [L] 1 DeziBel ( 1 dB) Die Unterscheidungsmöglichkeit des menschlichen Gehörs beträgt etwa 1dB.

60 Kapitel 11 - Wellen Nachteil: Die Empfindlichkeit des menschlichen Gehörs ist frequenzabhängig. Es ist bei 4000Hz am empfindlichsten, bei sehr tiefen und sehr hohen Frequenzen sehr unempfindlich. Daher führt man eine weitere Größe ein, die diese Eigenschaft berücksichtigt. Lautstärke  ist gleich dem Schallpegel, bezogen auf einen 1000Hz Ton. Einheit: 1 phon (oder 1 dBA) Dies führt zu Kurven gleicher Lautstärke. (Durch empirische Messungen ermittelt.)

61 Kapitel 11 - Wellen Kurven gleicher Lautstärke

62 Kapitel 11 - Wellen Hörkurven

63 Kapitel 11 - Wellen Stereohören

64 Kapitel 11 - Wellen Ende Schallpegel 20 dB 100 dB 120 dB 140 dB 80 dB 60 dB 40 dB Flüstern Knallkörper Walkman Rockkonzert Flugzeugstart Düsentriebwerk Verkehrslärm Presslufthammer Unterhaltung Schädigung Schmerzschwelle Gefährdung Hörschwelle

65 Kapitel 11 - Wellen Beispiel: Ein Moped hat eine Lautstärke von 80 dBA. 15 Schüler einer Klasse kommen gleichzeitig mit einem Moped zu einer Party. Berechne die Lautstärke aller Mopeds zusammen! 15 Mopeds ergeben: 15·I = 15·10 -4 = 1,5·10 -3 Wm -2 Wir setzen ein:

66 Kapitel 11 - Wellen Christian Doppler (1803 – 1853) 11.6 Der Dopplereffekt

67 Kapitel 11 - Wellen 11.6 Der Dopplereffekt Kann bei vorbeifahrenden Fahrzeugen gehört werden. Wir unterscheiden 2 Fälle: 1. Fall: Quelle ruht, Beobachter bewegt. Am ruhenden Beobachter würden in 1s die auf der Strecke SB = c= ·f liegenden f Wellenberge vorbeilaufen. Der bewegte Beobachter durchsetzt zusätzlich v/ Wellenberge. Bewegt sich der Beobachter weg, wird die Frequenz tiefer ( - in Formel) +... bei Nähern an die Schallquelle -... bei Entfernen von der Schallquelle

68 Kapitel 11 - Wellen 2. Fall: Quelle bewegt, Beobachter ruht. In 1s verschiebt sich S um v nach links. In den Punkten 1, 2, 3, 4 werden weitere Wellenberge erregt. Bild für t = 1s. Dadurch gelangt zum Beobachter eine Welle mit kürzerer Wellenlänge 1

69 Kapitel 11 - Wellen Bewegt sich die Schallquelle weg, so wird der Ton tiefer bei Nähern der Schallquelle +... bei Entfernen der Schallquelle

70 Kapitel 11 - Wellen Beispiel: Bei einem Autorennen vernimmt man beim Vorbeifahren eines Autos eine Quart (4/3). Berechne die Geschwindigkeit des Autos! Anleitung: Frequenz, die man beim Nähern hört: Frequenz, die man beim Entfernen hört: f 1 : f 2 = 4:33f 1 = 4f 2 3(c + v) = 4(c - v) 7v = c v = 47,14m/s = 169,7km/h

71 Kapitel 11 - Wellen Anwendungen des Dopplereffekts: Bewegte Objekte reflektieren eine Welle mit veränderter Frequenz. Dies wird zum Nachweis für die Bewegung von Gestirnen verwendet (Optik: Rotverschiebung) Radar zur Geschwindigkeitsmessung ruhendes Objekt sich näherndes Objekt sich entfernendes Objekt

72 Kapitel 11 - Wellen Geschwindigkeitsmessung mit Doppler-Effekt Moped fährt mit eingeschalteter Hupe vorbei. Mit Mikrophon wird der Ton ca. 10 m vor der Messstelle (Nähern) bis 10m nach der Messstelle (Entfernen) aufgenommen.

73 Kapitel 11 - Wellen Geschwindigkeitsmessung mit Doppler-Effekt

74 Kapitel 11 - Wellen Sonderfall: Überschall

75 Kapitel 11 - Wellen Sonderfall: Überschall Die Frequenz f 1 geht gegen unendlich. v > c Die Wellenfront der Schallwellen bildet einen Kegel, der Machscher Kegel (Mach Ernst ) genannt wird. Der Öffnungs- winkel dieses Kegels errechnet sich mit: Trifft die Wellenfront des Machschen Kegels die Erdoberfläche, so ist der Überschallknall (sonic boom) hörbar. (Schmerzgrenze, Fenster zerspringen bei großen Flugzeugen) Machzahl M

76 Kapitel 11 - Wellen Das Verhältnis der Flugzeuggeschwindigkeit zur Schallgeschwindigkeit wird als Machzahl M angegeben: Auch ein Peitschenknall ist eine Folge eines Überschallknalls.

77 Kapitel 11 - Wellen Kopfknallwelle eines Geschoßes

78 Kapitel 11 - Wellen Flugzeug im Überschallflug Knalllinie Flug- lärm lärmfreie Zone

79 Kapitel 11 - Wellen Durchbrechen der Schallmauer


Herunterladen ppt "Kapitel 11 - Wellen 11. Wellenlehre 11.1 Harmonische Wellen Definition: Gebilde, die harmonische Schwingungen ausführen können, bezeichnet man als harmonische."

Ähnliche Präsentationen


Google-Anzeigen