Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

M ATLAB / SIMULINK Summer School Simulink – Eine Einführung Was ist Simulink? Kombination aus den Begriffen Simulation und to link Simulation: Nachahmung.

Ähnliche Präsentationen


Präsentation zum Thema: "M ATLAB / SIMULINK Summer School Simulink – Eine Einführung Was ist Simulink? Kombination aus den Begriffen Simulation und to link Simulation: Nachahmung."—  Präsentation transkript:

1 M ATLAB / SIMULINK Summer School Simulink – Eine Einführung Was ist Simulink? Kombination aus den Begriffen Simulation und to link Simulation: Nachahmung Nachahmung des Verhaltens von technischen Systemen to link =verbinden von Teilsystemen Werkzeug zur Berechnung von zeitlichen Signalverläufen bei technischen Systemen

2 M ATLAB / SIMULINK Summer School Was erwartet Sie? Eine Einführung in die Idee der mathe- matischen Modellbildung und Simulation anhand anschaulicher Beispiele Beginn mit einfachen Beispielen Ausprobieren der Funktionen von Simulink einfache Modelle von technischen Systemen Experimentieren mit deren Eigenschaften Fragestellungen definieren und beantworten Erweiterung des technischen Denkens - Systemdenken

3 M ATLAB / SIMULINK Summer School Was ist die Grundidee? Technische Systeme werden über die Weitergabe von Signalen beschrieben: Beispiel Gebäude Außentemperatur wirkt auf die Innentemperatur Feder-Masse-Kombination; Stoß regt Schwingung an Biologische Systeme: Populationsdynamik Ökologische Systeme: Klimamodelle Grundidee: Bewegung die Temperatur geht nach oben Zeitliche Veränderung von Signalgrößen

4 M ATLAB / SIMULINK Summer School Was ist die Grundidee? Technische Systeme werden über die Weitergabe von Signalen beschrieben z. B. von links nach rechts: Signalquelle System mit Signalverarbeitung Signalsenke

5 M ATLAB / SIMULINK Summer School Alternative Technische Systeme werden über die Weitergabe von Signalen beschrieben; umgekehrte Variante von rechts nach links: Signalquelle System mit Signalverarbeitung Signalsenke Signalflussrichtung

6 M ATLAB / SIMULINK Summer School Simulink? Its all in English: Vorteil: man lernt die Begriffe gleich mit Nachteil: manchmal Missverständnisse Signalquelle = source System mit Signalverarbeitung = (model) block Signalsenke = sink

7 M ATLAB / SIMULINK Summer School Simulink Library Browser Signalquelle = source Signalsenke = sink System mit Signalverarbeitung = model block Programm demonstrieren Unterschied Continous-Discrete

8 M ATLAB / SIMULINK Summer School Block mit Parametern: source Doppelklick

9 M ATLAB / SIMULINK Summer School Beispiel: Außentemperaturverlauf Zeitraum: Ein kalter aber sonniger Septembertag Mittlere Außentemperatur = 0 °C Min-Temp. –10 °C 2 Uhr Max.-Temp °C 14 Uhr Zeiteinheit h Außentemperaturverlauf ähnlich Sinus Parameter ??????

10 M ATLAB / SIMULINK Summer School 1. Aufgabenstellung Statt Sekunden nimmt man falls sinnvoll überall Stunden oder Minuten

11 M ATLAB / SIMULINK Summer School 1. Aufgabenstellung Zusatzaufgabe Zeitraum: Ein typischer Septembertag Mittlere Außentemperatur = 10 °C Min-Temp. 0 °C 2 Uhr Max.-Temp °C 14 Uhr Zeiteinheit h Außentemperaturverlauf ähnlich Sinus Parameter ?????? Absolutwerte und Arbeitspunkt-bezogene Werte

12 M ATLAB / SIMULINK Summer School Zusammenfassung: Was haben wir gemacht? Wir haben uns einen Temperaturverlauf ausgedacht! Das war schon Modellbildung Wir hätten auch eine Messung verwenden können!

13 M ATLAB / SIMULINK Summer School Modellbildung Was ist ein MODEL(L)? Eine idealtypische gutaussehende/r bestens angezogene/r Frau/Mann? Störende Besonderheiten sollen wegfallen: Pickel, Übergewicht u.s.w. Beispiel Wetter

14 M ATLAB / SIMULINK Summer School Modellbildung Was ist ein MODELL? Es gibt unterschiedliche Modelltypen Verkleinertes Modell der Anlage: Spielzeugauto, Barbiepuppe Geometriemodell 3D-CAD, Architekturmodell Denkmodell Rechenmodell, mathematisches Modell Analogmodell the same equations have the same solutions

15 M ATLAB / SIMULINK Summer School Das mathematische Modell Technisches System Natürliches System Eingangsgröße x e Ausgangsgröße x a Algebraische Gleichungen Differentialgleichungen Randbedingungen Anfangsbedingungen Freier Fall unter Schwerkrafteinfluss Raumheizung Störung Fenster auf

16 M ATLAB / SIMULINK Summer School Das mathematische Modell Technisches System Natürliches System Eingangsgröße x e Ausgangsgröße x a Empirisches Modell: Aus Messdaten angepasst Mathematische Ansätze Interpolation Nur begrenzt verallgemeinerbar Beispiel: Übergangsfunktion Nichtempirisches Modell Aus Naturgesetzen = Bilanzgleichungen erstellt Besser verallgemeinerbar Es werden aber immer Näherungen und Vereinfachungen vorgenommen

17 M ATLAB / SIMULINK Summer School Beispiel: Aufheizvorgang Temperaturbad 40 °C Metallblock 20 °C Eintauchen Qualitatives Denkmodell Temperatur steigt am Anfang schnell, dann langsamer und erreicht am Schluss 40 °C Der Block hat Wärme aufgenommen Fühler in Rohrleitung als typisches technisches Beispiel

18 M ATLAB / SIMULINK Summer School Beispiel: Aufheizvorgang Temperaturbad θ e 40 °C Metallblock θ a 20 °C Eintauchen Mathematisches Modell M*c*d/dt θ a = α*A*(θ e - θ a ) M Masse Block c Wärmekapazität Block Α Oberfläche Block Wärmeübergangskoeffizient α Temperatur steigt am Anfang schnell, dann langsamer und erreicht am Schluss 40 °C Der Block hat Wärme aufgenommen

19 M ATLAB / SIMULINK Summer School Beispiel: Aufheizvorgang Temperaturbad θ e 40 °C Metallblock θ a 20 °C Eintauchen Mathematisches Modell τ*d/dt θ a = (θ e - θ a ) M Masse Block c Wärmekapazität Block Α Oberfläche Block Wärmeübergangskoeffizient α Τ = M*c/( α *A) nennt man Zeitkonstante Temperatur steigt am Anfang schnell, dann langsamer und erreicht am Schluss 40 °C Der Block hat Wärme aufgenommen

20 M ATLAB / SIMULINK Summer School Ergebnis 40 °C 20 °C Zeit Temperaturbad θ e 40 °C Metallblock θ a 20 °C Frequenzgang anschaulich machen

21 M ATLAB / SIMULINK Summer School Frequenzgang Temperaturbad θ e 40 °C Mittelwert θ a 30 °C Temperaturbad θ e 20 °C 10 sec

22 M ATLAB / SIMULINK Summer School Frequenzgang 40 °C 20 °C

23 M ATLAB / SIMULINK Summer School Anwendungen und Denkaufgaben An der Tafel Temperaturmessung: Anbringung Messfühler in Rohrleitung Temperaturmessung: Bestimmung der Fühlerzeitkonstante Gebäude im Sommer: Gebäudezeitkonstante und Temperaturamplitudenverhältnis Maschinenbau: thermische Behandlung von Werkstücken Denkaufgabe: Sumoringer (180 kg) und schlanker Mensch (60 kg) gehen gleichzeitig mit 37 °C Ausgangstemperatur in die Sauna. Wer fängt früher zu Schwitzen an? Argumentieren Sie mit der Zeitkonstanten! oder Elefant (600 kg) und Maus (0,5 kg) fallen gleichzeitig mit 37 °C Ausgangstemperatur ins kalte Wasserloch. Wer friert als erstes?

24 M ATLAB / SIMULINK Summer School Verallgemeinerung System 1. Ordnung τ*d/dt θ a = (θ e - θ a ) Allgemein τ*d/dt x a = (K P *x e -x a ) Parameter: Proportionalbeiwert: K P Zeitkonstante: τ System 1. Ordnung PT1-Verhalten LTI-System linear-time-invariant Eingangsgröße x e Ausgangsgröße x a

25 M ATLAB / SIMULINK Summer School Und die Übertragungsfunktion System 1. Ordnung τ*d/dt x a = (K P *x e -x a ) d/dt s τ*s*x a = (K P *x e -x a ) G = X a /X e = K P /(τ*s + 1 ) System 1. Ordnung PT1-Verhalten LTI-System linear-time-invariant Eingangsgröße x e Ausgangsgröße x a Das ist die Darstellung der Differentialgleichung als Laplace-Transformierte im Bildbereich Lösungsverfahren für Differentialgleichungen Bringt einen nicht weiter wegen Nichtlinearitäten

26 M ATLAB / SIMULINK Summer School Realisierung System 1. Ordnung A1 Zeitkonstante Proportionalbeiwert Aufg1 Aufheizvorgang von 20 °C auf 40 °C eines Metallblocks Lösung für den Notfall System 1. Ordnung G = X a /X e = K P /(τ*s + 1 )

27 M ATLAB / SIMULINK Summer School Realisierung System 1. Ordnung A2 Aufg2 Gebäude Gebäudezeitkonstante 40 h Auskühlvorgang von 22 °C auf -10 °C Nach welcher Zeit werden 0 °C erreicht ? Lösung für den Notfall Mux Gibts unter Signals and systems

28 M ATLAB / SIMULINK Summer School Realisierung System 1. Ordnung A3 Aufg3 Gebäude Temperaturamplitudenverhältnis TAV im Sommerbetrieb Temperaturverlauf ~ Sinusfunktion Mittlere Temperatur 25 °C Temperatur max. 35 °C Gebäudezeitkonstante Verhältnis TAV von Temperaturamplitude innen zu außen? Lösung für den Notfall

29 M ATLAB / SIMULINK Summer School Realisierung System 1. Ordnung A4 Aufg4 ähnlich Aufg3 Gebäude Temperaturamplitudenverhältnis TAV im Sommerbetrieb Temperaturverlauf ~ Sinusfunktion Mittlere Temperatur 25 °C Temperatur max. 35 °C Gebäudezeitkonstante Bestimmen Sie das TAV als Verhältnis der Gebäudezeitkonstante im Bereich von 20 h bis 120 h! Lösung für den Notfall

30 M ATLAB / SIMULINK Summer School Realisierung System 1. Ordnung A5 Lösung für den Notfall Aufg5 Frequenzgang am Beispiel einer Müllverbrennung Problemstellung wird an der Tafel dargestellt Reaktion auf Brennstoffstörungen im Bereich von 1 MW bei unterschiedlichen Frequenzen sollen ermittelt werden. Periodendauer der Störung 2 min bis 100 min Zeitkonstante des Verbrennungssystems 10 min Anregungsamplitude 33 K/MW

31 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Aufg6 Totzeitverhalten = Delay Mischung zweier Volumenströme Entscheidend ist die Transportzeit als zusätzliche Verzögerung Vor dem Aufheizverhalten des Fühlers Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß

32 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß xexe Blocksymbol xaxa Kennwerte: K P = 1

33 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Aufg6 Totzeitverhalten = Transportdelay Neue Blöcke Transport Delay Fcn Function Step Stufenfunktion Selbst suchen, System aufbauen Totzeit 10 sec Zeitkonstante Fühler 30 sec

34 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß

35 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Anwendungsbeispiel: Drehzahlregelbare Pumpe Signal für drehzahlregelbare Pumpe Variable Geschwindigkeit Variables Delay Signal für drehzahlregelbare Pumpe Variable Geschwindigkeit Variables Delay

36 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 hier wird die Mischungstemperatur explizit gebildet (Erklärung)

37 M ATLAB / SIMULINK Summer School Zusatzaufgabe: Voraussagefähigkeit = Systemdenken trainieren Skizzieren Sie vor Realisierung des Simulinkmodells den Zeitverlauf Vergleichen Sie Ihre Voraussage nach Erstellen des Simulinkmodells Denktraining A6

38 M ATLAB / SIMULINK Summer School Realisierung System mit Delay A6 Lösung für den Notfall

39 M ATLAB / SIMULINK Summer School T Wärme ThermostatventilHeizkörperRaum Heizung Ventil öffnen Aufheizen Inhalt Heizkörper Aufheizen Raum System höherer Ordnung A7 Aufg7 Raumtemperaturregelstrecke Vorteil: Hat man überall vor Augen (außer im Freien) Idee: Hintereinanderschaltung mehrerer Aufheizprozesse Zeitkonstanten schätzen Proportionalbeiwert?

40 M ATLAB / SIMULINK Summer School System höherer Ordnung A7 Bei der Raumheizung hat man einen Vorgang, bei dem man gut sehen kann, wie man die Modellierung gröber oder feiner aufbauen kann. Wenn man sich die Verhältnisse betrachtet, dann sieht man, dass man grob drei Aufheizvorgänge hat: 1. Das Thermostatventil wird abgekühlt, z. B. durch fallende Raumtemperatur und öffnet dann. Dieser Vorgang kann durch eine Energiebilanz grob beschrieben werden (PT1-Verhalten). 2. Dann wird der Heizkörper aufgeheizt. Das ist ein komplexer Vorgang, der wieder grob durch eine Energiebilanz, aber auch verfeinert durch eine Regelstrecke höherer Ordnung (die man aus Modellbibliotheken bekommt) beschrieben werden kann. 3. Dann heizt sich durch Zunahme der Konvektion die Luft im Raum auf und anschließend reagieren noch die Hüllflächen des Raums. Dies ist schon ein ziemlich komplexer Vorgang, für den sehr fein ausgearbeitete Modelle zugrunde gelegt werden könnten. Da man aber sehr unterschiedliche Hüllflächen in Räumen haben kann, kann man auch zunächst mit einem sehr vereinfachten Modell starten. Falls nur PT 1 – Elemente vorkommen beziehungsweise verwendet werden, definiert deren Anzahl die Ordnung in der Strecke. Der angegebene Ansatz ist also ziemlich vereinfacht. Man kann nun beispielsweise ein weiteres Glied hinzufügen, dass als Totzeitglied die restlichen Verzögerungen und Effekte beschreiben soll. Dann spricht man von einem halbempirischen Modell, das aus einfachen physikalisch motivierten Ansätzen besteht und durch empirische Modellanteile ergänzt wird. In der technischen Anwendung geht man also sehr praxisorientiert vor und versucht das Problem dadurch mit einem vertretbaren Aufwand zu beschreiben. Damit nicht jeder wieder von vorne mit dieser Arbeit beginnen muss, gibt es Modellbibliotheken, aus denen man Teilmodelle entnehmen kann.

41 M ATLAB / SIMULINK Summer School System höherer Ordnung A7 T Wärme ThermostatventilHeizkörperRaum Heizung Ventil öffnen Aufheizen Inhalt Heizkörper Aufheizen Raum Zeitkonstanten Zeitkonstante = 10 minZeitkonstante = 30 minZeitkonstante = 100 min Proportionalbeiwert: Öffne ich das Ventil um 100 % geht die Temperatur um ca °C bei der tiefsten Außentemperatur (z. B. –10°C) hoch; so ist die Auslegung. Also Proportionalbeiwert K P = 40 °C / 100 % = 0.4 °C/%

42 M ATLAB / SIMULINK Summer School Aufg7 Raumtemperaturregelstrecke Außentemperatur = 0 °C Ventil auf 50 % Nach 400 min kommen einige Personen, die einer Wärmequelle von 20 % der maximalen Heizleistung entsprechen. Wie ist der Temperaturanstieg? Lösung für den Notfall System höherer Ordnung A7

43 M ATLAB / SIMULINK Summer School Zusatzaufgabe: Voraussagefähigkeit = Systemdenken trainieren Skizzieren Sie vor Realisierung des Simulinkmodells den Zeitverlauf Vergleichen Sie Ihre Voraussage nach Erstellen des Simulinkmodells Denktraining A7

44 M ATLAB / SIMULINK Summer School Aufg8 Raumtemperaturregelstrecke mit Zweipunktregelung ausprobieren; Variieren des Abstandes zwischen den Schaltpunkten Bewerten Sie die Regelung! Außentemperatur = 0 °C Nach 500 min kommen Personen, die eine Wärmequelle von 20 % der maximalen Heizleistung entspricht? Lösung für den Notfall System höherer Ordnung A8

45 M ATLAB / SIMULINK Summer School Zusatzaufgabe: Voraussagefähigkeit = Systemdenken trainieren Skizzieren Sie vor Realisierung des Simulinkmodells den Zeitverlauf oder beschreiben Sie ihn verbal Vergleichen Sie Ihre Voraussage nach Erstellen des Simulinkmodells Denktraining A8

46 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke Die Ableitung Derivative

47 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke Pulse Generator Integrator

48 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke Clock

49 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke Stochastische Anregung Random Number

50 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke Mathematisches Modell Q_p = m_p*c*(θ 1 - θ 2 ) M_p Massenstrom c Wärmekapazität Aufgebaut aus Mathematischen Blöcken Aufgabe A9 Wärmeleistung

51 M ATLAB / SIMULINK Summer School Zunächst soll in Form einer Übersicht das Verhalten des PID-Reglers erklärt werden, wobei das Integralverhalten und die Kombination PI wesentlich für das Verständnis sind. Bei allen anlagentechnischen Aufgabenstellungen, bei denen es auf eine genaue Regelung ankommt, wird mindesten der PI-Regler eingesetzt. xaxa xexe Regler PID – Regler: DGL: P I D Die Einstellparameter des Reglers sind: K P Proportionalbeiwert; wird auch als K PR oder K R bezeichnet. K I Integralbeiwert K I = K P /τ N Bei den deutschen Systemen wird K P zur gemeinsamen Reglerverstärkung gemacht und der I-Anteil über die Einstellung der Nachstellzeit τ N bestimmt. In angloamerikanischen Systemen wird K I stattdessen verwendet. K D Der D-Anteil K D = K D * τ V. Bei den deutschen Systemen wird wieder K P zur gemeinsamen Reglerverstärkung gemacht und der D-Anteil über die Einstellung der Vorhaltezeit τ V bestimmt. D-AnteilI-Anteil P-Anteil Gesamtreaktion xexe P I D Einzelregelung y = y P + y I + y D Mit diesem Verfahren sind natürlich eine ganze Reihe anderer Reglertypen ableitbar, die Untergruppen aus den drei Anteilen darstellen:

52 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke PID Regler = Controller findet man unter Extras

53 M ATLAB / SIMULINK Summer School Weitere interessante Blöcke

54 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Störung Regler P I D Sollwert Stellmotor M

55 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Störung Regler P I D Sollwert Stellmotor M Geschlossener Regelkreis

56 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P1 Strecke höherer Ordnung mit P-Regler

57 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P1 Strecke höherer Ordnung mit P-Regler Reglerverstärkung

58 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P1 Aufgaben 1.Variieren Sie die Reglereinstellung zwischen 2 und 16 und beobachten Sie das Verhalten! 2.Ist bei Störungen und Sollwertsprüngen die Regelung genau? 3.Wie wirkt sich die Reglerverstärkung auf die Genauigkeit aus? 4.Bestimmen Sie die Stabilitätsgrenze (Dauerschwingung)! 5.Bestimmen sie den Einfluss der Totzeit auf die Stabilität durch Vergrößern und Verkleinern der Totzeit!

59 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P2 Strecke höherer Ordnung mit PI-Regler

60 M ATLAB / SIMULINK Summer School Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Störung Regler P I D Sollwert Stellmotor M Geschlossener Regelkreis Rückgekoppelte Systeme P2 50 °C 0 °C Konkretes Anwendungsbeispiel mit Temperaturen Der Proportionalbeiwert der Strecke ist dann 50 °C / 100 % = 0.5 °C/%

61 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P2 Strecke höherer Ordnung mit PI-Regler Frequenzgang anschaulich machen Nachstellzeit = 100 Der Proportionalbeiwert der Strecke ist dann 50 °C / 100 % = 0.5 °C/%

62 M ATLAB / SIMULINK Summer School Aufgaben 1.Variieren Sie die Nachstellzeit zwischen 30 und 300 und beobachten Sie das Verhalten! 2.Wie wirkt sich die Nachstellzeit auf die Genauigkeit aus? 3.Bestimmen Sie die Stabilitätsgrenze (Dauerschwingung) bei zu kleiner Nachstellzeit! 4.Bestimmen sie den Einfluss der Totzeit auf die Stabilität durch Vergrößern und Verkleinern der Totzeit! Rückgekoppelte Systeme P2

63 M ATLAB / SIMULINK Summer School Stellgrößenbegrenzung Saturation Strecke höherer Ordnung mit PI-Regler Rückgekoppelte Systeme P3

64 M ATLAB / SIMULINK Summer School Beim Überholen kann man nicht mehr als Vollgas (100 %) geben. Das weitere Geschehen bestimmt das Fahrzeug Rückgekoppelte Systeme P3

65 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P3 Strecke höherer Ordnung mit PI-Regler und Stellgrößenbegrenzung Saturation

66 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P3 Aufgaben 1.Variieren Sie die Höhe des Sollwertsprungs bis die Stellgröße gerade nicht mehr in die Sättigung läuft! 2.Vermindern Sie die Reglerverstärkung (Ausgangswert 6%/°C), bis die Stellgröße nicht mehr in die Sättigung läuft! Was ist dann der Nachteil (Geschwindigkeit des Regelvorgangs)? 3.Welchen Einfluss hat die Totzeit auf das Erreichen der Stellgrößensättigung bei dem vorgegebenen Sollwertsprung?

67 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P4 Erstellen einer Anfahrkurve zur Reduzierung von Sättigungseffekten und zur Geschwindigkeitsoptimierung

68 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P4 Eile mit Weile

69 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P4 Strecke höherer Ordnung mit PI-Regler und Stellgrößenbegrenzung Saturation Erstellen einer Anfahrkurve zum Vermeiden der Sättigung Anfahrkurve besteht aus (von rechts nach links): Constant1 Integrator Saturation 1

70 M ATLAB / SIMULINK Summer School Aufgaben 1.Variieren Sie die Sollwertgeschwindigkeit, bis die Stellgröße gerade nicht mehr in die Sättigung läuft! 2.Verändern Sie die Reglereinstellung (Proportionalbeiwert Ausgangswert 6%/°C und Nachstellzeit 100 s) und die Anfahrgeschwindigkeit, so dass der ganze Vorgang geschwindigkeitsoptimiert abläuft. Die Zeit bis zum erstmaligen Erreichen der 30°C soll minimiert werden. Das Überschwingen soll dabei weniger als drei Grad C betragen. Rückgekoppelte Systeme P4

71 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P4 Diese Aufgabe ist ein Wettbewerb Dem Gewinner winkt einbesonderes Lob und allen Teilnehmern, die sich beteiligen und (wahrscheinlich knapp) nicht gewinnen, gibt es einen kleinen wohlschmeckenden Trost(preis) Der erlaubte Bereich des Dopings beim Radeln und Simulieren ist die Zufuhr von Zucker und wässrigen Getränken Achtung!

72 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P5 Nichtlineares Kennlinienverhalten Dargestellt durch Eine LOOK-UP-Tabelle (erlaubter Spickzettel)

73 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P5 Bei höherer Leistung werden die Zuwächse immer geringer

74 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P5

75 M ATLAB / SIMULINK Summer School Zur Darstellung einer Nichtlinearität kann man eine sogenannte Look- Up-Tabelle benutzen. Dabei wir ein x-y- Diagramm für die Kennlinie in Form von Wertepaaren eingegeben. Zum Test des Betriebsverhaltens der Regelung werden drei nacheinander stattfindende additive Sollwertsprünge verwendet (wie im Scope dargestellt) Rückgekoppelte Systeme P5

76 M ATLAB / SIMULINK Summer School Aufgaben 1.Variieren Sie den funktionalen Zusammenhang der Kennlinie. Wählen Sie diese näher am linearen Fall. Anschließend machen Sie den Zusammenhang nichtlinearer (stärker gekrümmt). 2.Verändern Sie die Reglereinstellung (Proportionalbeiwert Ausgangswert 6%/°C und Nachstellzeit 100 s) so, dass sich ein guter Kompromiss für alle Betriebsvarianten ergibt.. Rückgekoppelte Systeme P5

77 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P6 Jetzt variable Delays =variable Totzeiten Bisher LTI-Systeme LTI linear time invariant Ergibt sich bei Systemen mit Drehzahlregelung

78 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P6 Die berühmte Schrecksekunde Kann variieren mit der vorgehenden mentalen Bereitschaft

79 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P6 Dreiwegeventil T Geschwindigkeit v Vorlauf T Messung Entfernung l T kalt Rücklauf T heiß Anwendungsbeispiel: Drehzahlregelbare Pumpe Signal für drehzahlregelbare Pumpe Variable Geschwindigkeit Variables Delay Signal für drehzahlregelbare Pumpe Variable Geschwindigkeit Variables Delay

80 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P6 Bei unterschiedlichen Betriebspunkten hat man unterschiedliche Drehzahlen und damit auch Totzeiten Damit wir die Dynamik des Regelkreises bei kleinen energetischen Leistungen schlechter

81 M ATLAB / SIMULINK Summer School Rückgekoppelte Systeme P6 Aufgaben 1.Machen Sie sich die Variation der Totzeit anhand der gegebenen Funktion klar. 2.Verändern Sie die Reglereinstellung (Proportionalbeiwert Ausgangswert 6%/°C und Nachstellzeit 100 s) so, dass sich ein guter Kompromiss für alle oder die meisten Betriebsvarianten ergibt..

82 M ATLAB / SIMULINK Summer School Das war ein ganz schönes Paket Vielen Dank für die Mitarbeit Was man nicht lernt beizeiten, könnte später dauerhaft Ärger bereiten????


Herunterladen ppt "M ATLAB / SIMULINK Summer School Simulink – Eine Einführung Was ist Simulink? Kombination aus den Begriffen Simulation und to link Simulation: Nachahmung."

Ähnliche Präsentationen


Google-Anzeigen