Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte.

Ähnliche Präsentationen


Präsentation zum Thema: "1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte."—  Präsentation transkript:

1 1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte verstehen. Mittelwert und Streuungsmass kennen. Mit der Binomialverteilung, der Poisson- Verteilung und der Normalverteilung angemessene Probleme lösen können.

2 2 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilungen Binomialverteilung Hypergeometrische Verteilung Poisson-Verteilung Normalverteilung Exponentialverteilung...

3 3 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Zufallsvariable Eine Zufallsvariable (Zufallsgrösse) ist eine Funktion, die jedem Elementarereignis aus der Ergebnismenge genau eine reele Zahl X( ) zuordnet. Beispiele: X = Anzahl Würfe mit Augenzahl 1 X = Messwert in einer Messserie

4 4 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Verteilungsfunktion Die Verteilungsfunktion F(X) einer Zufallsvariablen X ist die Wahrscheinlichkeit, dass die Zufallsvariable X einen Wert annimmt, der kleiner oder gleich einer vorgegebenen reellen Zahl x ist: F(x) = P(X x) Es gilt: P(a < X b) = F(b) - F(a)

5 5 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Diskrete Verteilung Die Wahrscheinlichkeitsverteilung einer diskreten Zufallsvarfiablen X lässt sich durch die Wahrscheinlich- keitsfunktion oder durch die zugehörige Verteilungsfunktion vollständig beschreiben.

6 6 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Diskrete Verteilung Es gilt:

7 7 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Stetige Verteilung Bei einer stetigen Zufallsvariablen X mit dem Wertebereich – < X < wird die Verteilungs- funktion F(x) in der Integralform dargestellt: f(x) heisst Dichtefunktion

8 8 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Stetige Verteilung Es gilt:

9 9 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Erwartungswert einer Zufallsvariablen

10 10 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Diskrete Zufallsvariable X

11 11 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Stetige Zufallsvariable X

12 12 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Binomialverteilung (diskret) Beispiel: Wie gross ist die Wahrscheinlichkeit, mit zwei Würfel in 10 Versuchen 4-mal die Augen- summe 6 zu werfen? P(X = 4) =

13 13 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Binomialverteilung allgemein: Ziehen mit Zurücklegen Die Wahrscheinlichkeit, dass in n Zufalls- versuchen das Ereignis E x-mal eintritt, ist:

14 14 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Poisson-Verteilung Anzahl der Zufallsversuche ist sehr gross und die Wahrscheinlichkeit p ist sehr klein (d.h. es wird q = 1 - p 1) Grenzwert der Binomialverteilung mit n. Es gilt: Erwartungswert = np Varianz 2 = npq =

15 15 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Poisson: Relativer Fehler Für eine Messunsicherheit von 10% müssen im Mittel pro Messintervall wenigstens µ = 10 2 Ereignisse registriert werden. Für höhere Genauigkeiten gilt: 1%µ = µ = 10 6

16 16 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Poisson: Beispiel Ein Gramm Radium (Ra) enthält etwa Atome. Diese können zerfallen. Der Zerfall eines Kerns ist unabhängig von anderen kernen. Ferner ist be- kannt, dass die mittler Anzahl -Teilchen, welche 1 Gramm Radium pro Sekunde aussendet, ist. Wie gross ist die Wahrscheinlichkeit, dass in einem Messintervall t (z.B. t = 1s) von 1 Gramm Radium x -Teilchen ausgesandt werden?

17 17 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Poisson: Lösung Erwartungswert = np = p 10 10

18 18 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Normalverteilung Die Zufallsvariable X kann jeden reellen Wert einnehmen. Die Normalverteilung ist eine kontinuierliche Verteilung. glockenförmige Verteilungskurve

19 19 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Gauss'sche Glockenkurve: Dichtefunktion

20 20 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Gauss'sche Glockenkurve: Verteilungsfunktion µ = Mittelwert = Standardabweichung

21 21 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Gauss'sche Glockenkurve Die Koeffizienten sind so festgelegt, dass die Fläche zwischen Kurve und Achse für alle und immer 1 ergibt. Es gilt:

22 22 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz = 0, variiert = 1 = 2 = 5

23 23 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz variiert, = 1 = 0 = -5 = 10

24 24 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeit, x1x1 x2x2 dass der Wert der Zufallsvariablen x zwischen x1 und x2 liegt:

25 25 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Exponentialverteilung


Herunterladen ppt "1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte."

Ähnliche Präsentationen


Google-Anzeigen