STATISIK LV Nr.: 0028 SS 2005 18. Mai 2005.

Slides:



Advertisements
Ähnliche Präsentationen
Definition [1]: Sei S eine endliche Menge und sei p eine Abbildung von S in die positiven reellen Zahlen Für einen Teilmenge ES von S sei p definiert.
Advertisements

Stochastik und Markovketten
Die Laufzeit von randomisierten (zufallsgesteuerten) Algorithmen hängt von gewissen zufälligen Ereignissen ab (Beispiel Quicksort). Um die Laufzeiten dieser.
Was ist Testtheorie?.
Telefonnummer.
CPCP Institute of Clinical Pharmacology AGAH Annual Meeting, 29. Februar 2004, Berlin, Praktischer Umgang mit den Genehmigungsanträgen gemäß 12. AMG Novelle.
Modelle und Methoden der Linearen und Nichtlinearen Optimierung (Ausgewählte Methoden und Fallstudien) U N I V E R S I T Ä T H A M B U R G November 2011.
1 JIM-Studie 2010 Jugend, Information, (Multi-)Media Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Gliederung Definition des Wahrscheinlichkeitsbegriffes
Grundkurs Theoretische Informatik, Folie 2.1 © 2006 G. Vossen,K.-U. Witt Grundkurs Theoretische Informatik Kapitel 2 Gottfried Vossen Kurt-Ulrich Witt.
AC Analyse.
Schieferdeckarten Dach.ppt
Wahrscheinlichkeitstheorie
Statistische Methoden I
Konfidenzintervalle Intervallschätzung
Die Student- oder t-Verteilung
Konfidenzintervalle Intervallschätzung Jeder Beobachtung wird ein Intervall C( ) der reellen Zahlen zugeordnet Niveau Dabei ist die Wahrscheinlichkeit,
Statistische Methoden I WS 2004/2005 Vorlesung:Prof. Dr. Michael Schürmann Zeit:Freitag (Pause: ) Ort:Hörsaal Loefflerstraße.
Hier noch ein Beispiel zur bedingten Wahrscheinlichkeit Drei Personen A, B und C befinden sich im Gefängnis. Einer von den dreien ist zum Tode verurteilt,
Konzentrationsmaße (Gini-Koeffizient, Lorenz-Kurve) Konzentrationsmaße Kennwert für die wirtschaftliche Konzentration Typische Beispiele: Verteilung.
Datentabelle für 2 Merkmale
Bedingte Wahrscheinlichkeiten
Grundbegriffe der (deskriptiven) Statistikder Wahrscheinlichkeitstheorie.
Verteilungsfunktion der Normalverteilung I. Verteilungsfunktion der Normalverteilung II.
Grundbegriffe der (deskriptiven) Statistik
Vorlesung: Biometrie für Studierende der Veterinärmedizin
Vorlesung Biometrie für Studierende der Veterinärmedizin
Vorlesung Biometrie für Studierende der Veterinärmedizin Begriff der Zufallsgröße Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt:
Wahrscheinlichkeitsrechnung
20:00.
Wahrscheinlichkeitsrechnung Grundbegriffe
Wahrscheinlichkeitsverteilung
Wir üben die Malsätzchen
STATISIK LV Nr.: 1375 SS März 2005.
Wahrscheinlichkeit Zufallsexperiment:
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0028 SS Mai 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
STATISIK LV Nr.: 1852 WS 2005/ Dezember 2005.
NEU! 1 2. Wo kommt diese Art von Rezeptor im Körper vor?
Wahrscheinlichkeitsrechnung
PROCAM Score Alter (Jahre)
Referat über das Thema STOCHASTIK.
Grundbegriffe der Stochastik
5.6 Zwei- und mehrdimensionale Zufallsvariablen
Vorlesung Mai 2000 Konstruktion des Voronoi-Diagramms II
Stetige Verteilungen Das Uhrenbeispiel Dichtefunktion
Großer Altersunterschied bei Paaren fällt nicht auf!
MINDREADER Ein magisch - interaktives Erlebnis mit ENZO PAOLO
STATISIK LV Nr.: 1852 WS 2005/06 6. Dezember 2005.
STATISIK LV Nr.: 0021 WS 2005/ Oktober 2005.
1 (C) 2002, Hermann Knoll, HTW Chur, Fachhochschule Ostschweiz Wahrscheinlichkeitsverteilung Lernziele: Wahrscheinlichkeitsverteilung und der Wahrscheinlichkeitsdichte.
1 (C)2006, Hermann Knoll, HTW Chur, FHO Quadratische Reste Definitionen: Quadratischer Rest Quadratwurzel Anwendungen.
1. 2. Berechnen von Wahrscheinlichkeiten
Der Zentralwert.
Schutzvermerk nach DIN 34 beachten 20/05/14 Seite 1 Grundlagen XSoft Lösung :Logische Grundschaltung IEC-Grundlagen und logische Verknüpfungen.
Statistik Statistik I Seminar + Blockveranstaltung Statistik I
1 Mathematical Programming Nichtlineare Programmierung.
Ertragsteuern, 5. Auflage Christiana Djanani, Gernot Brähler, Christian Lösel, Andreas Krenzin © UVK Verlagsgesellschaft mbH, Konstanz und München 2012.
Begriff der Zufallsgröße
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wie.
Stochastik Grundlagen
1 Medienpädagogischer Forschungsverbund Südwest KIM-Studie 2014 Landesanstalt für Kommunikation Baden-Württemberg (LFK) Landeszentrale für Medien und Kommunikation.
Monatsbericht Ausgleichsenergiemarkt Gas – Oktober
Stochastik ganz kurz Beispiel diskret Würfelwurf Beispiel stetig
K. Desch - Statistik und Datenanalyse SS05
K. Desch - Statistik und Datenanalyse SS05 Statistik und Datenanalyse 1.Wahrscheinlichkeit 2.Wahrscheinlichkeitsverteilungen 3.Monte-Carlo-Methoden 4.Statistische.
Die Binomialverteilung
Wahrscheinlichkeitsrechnung Übersicht
 Präsentation transkript:

STATISIK LV Nr.: 0028 SS 2005 18. Mai 2005

Zweidimensionale Merkmale Frage: Wie lässt sich der Zusammenhang bzw. die Abhängigkeit zw. zwei Merkmalen messen? Wie stark ist der Zusammenhang bzw. die Abhängigkeit? Antwort durch Korrelationsrechnung. Lässt sich der Zusammenhang in einer bestimmten Form darstellen? Antwort durch Regressionsrechnung.

Zweidimensionale Merkmale n Untersuchungseinheiten, 2 Merkmale X und Y, Ausprägungen des Merkmals X a1,…,al und Ausprägungen des Merkmals Y b1,…,bm. 2-dimensionales Merkmal (X,Y) mit Ausprägungen (aj,bk), mit absoluten Häufigkeiten hjk und relativen Häufigkeiten fjk=1/n·hjk

Kontingenztafel Häufigkeitsverteilung von (X,Y) wird durch Kontingenztafel dargestellt. X Y b1 … bm a1 h11 h1m : al hl1 hlm

Kontingenztafel Bsp. Geschlecht (X) Rauchverhalten (Y): absolute und relative Häufigkeiten von (X,Y). X Y R N-R w 9 32 m 5 27 X Y R N-R w 0,12 0,44 m 0,07 0,37

Kontingenztafel Absolute Randhäufigkeiten Relative Randhäufigkeiten von aj für j=1,…,l und bk für k=1,...,m: Relative Randhäufigkeiten von aj für j=1,…,l und bk für k=1,…,m: Randhäufigkeiten ergeben die Häufigkeits-verteilung des Merkmals X bzw.Y (Randverteilung).

Kontingenztafel Kontingenztafel absoluten Häufigkeiten und Randhäufigkeiten X Y b1 … bm Σ a1 h11 h1m h1. : al hl1 hlm hl. h.1 h.m h..=n

Kontingenztafel Kontingenztafel relative Häufigkeiten und Randhäufigkeiten X Y b1 … bm Σ a1 f11 f1m f1. : al fl1 flm fl. f.1 f.m f..=1

Kontingenztafel Es gilt: Relative Randhäufigkeit = 1 / n · absolute Randhäufigkeit Summe der absoluten Randhäufigkeiten = n Summe der relativen Randhäufigkeiten = 1

Kontingenztafel Bsp. Geschlecht (X) Rauchverhalten (Y): absolute und relative Häufigkeiten und Randhäufigkeiten von (X,Y). X Y R N-R  w 9 32 41 m 5 27 14 59 73 X Y R N-R  w 0,12 0,44 0,56 m 0,07 0,37 0,19 0,81 1

Kontingenztafel Bsp. Geschlecht (X) Rauchverhalten (Y): Zeilenprozent: X Y R N-R  w 9 32 41 m 5 27 14 59 73 X Y R N-R  w 0,22 0,78 1 m 0,16 0,84 0,19 0,81

Kontingenztafel Bsp. Geschlecht (X) Rauchverhalten (Y): Spaltenprozent: X Y R N-R  w 9 32 41 m 5 27 14 59 73 X Y R N-R  w 0,64 0,54 0,56 m 0,36 0,46 0,44 1

Darstellung

Darstellung

Korrelationskoeffizient Bravais-Pearson Korrelationskoeffizient rXY 2-dimensionales metrisch skaliertes Merkmal (X,Y) mit Ausprägungen (aj,bk) und Häufigkeiten hjk für j=1,…,l und k=1,…,m. Maß für den Zusammenhang zw. X und Y:

Korrelationskoeffizient rXY liegt immer im Intervall [-1,1] Extremfälle: -1 negativer linearer Zusammenhang rXY = 0 kein linearer Zusammenhang 1 positiver linearer Zusammenhang Interpretation: rXY < 0 d.h. große Werte von X treten mit kleinen Werten von Y auf rXY > 0 d.h. große Werte von X treten mit großen Werten von Y auf

Korrelationskoeffizient Probleme: Scheinkorrelation: X und Y hängen von einem dritten Merkmal Z ab Bsp. Gefahr eines Waldbrandes (X) und schlechter Kornertrag (Y) hängen von der Stärke der Sonneneinstrahlung (Z) ab. Nonsenskorrelation: sachlogischer Zusammenhang zw. X und Y Bsp. Korrelation zw. Anzahl der Störche und der Anzahl der Geburten in einem Land Nichtlinearer Zusammenhang: rXY misst nur einen linearer Zusammenhang

Korrelation

Korrelation

Korrelationskoeffizient Bsp. Körpergröße und Gewicht: r = 0,76 Positiver linearer Zusammenhang zw. Körpergröße und Gewicht.

Korrelation Fechnersche Korrelationskoeffizient (für 2 metrisch skalierte Merkmale X und Y): rF Basiert auf Vorzeichen der transformierten Paare x* und y* 1 x* und y* gleiches Vorzeichen od. beide 0 vi = ½ genau einer der Werte x* bzw. y* = 0 0 sonst

Korrelation Fechnersche Korrelationskoeffizient: Werte im Intervalle [-1,1] +1 nicht nur bei positivem linearen Zusammenhang, sonder auch wenn gilt: oder

Korrelation Bsp. Hennen, Körpergewicht, Legeleistung

Korrelation Rangkorrelationen für ordinal skalierte Merkmale: Verwendung von Rangzahlen: Merkmal Z, Ausprägungen z1,…,zn, der Größe nach ordnen (vom größten zum kleinsten Wert) z(1),…,z(n) und nummerieren. Rangzahl: R(z(i)) = i für i=1,…,n Tritt ein Ausprägung mehrmals auf (Auftreten von Bindungen), dann Rang = arithm. Mittel der Ränge, die sie einnehmen. Bsp: z(1)=8, z(2)=5, z(3)=5, z(4)=2, Ränge: R(z(1))=1, R(z(2))=2,5, R(z(3))=2,5, R(z(4))=4

Korrelation Spearmansche Rangkorrelationskoeffizient rS Entspricht dem Bravais-Pearson Koeffizienten der Rangzahlen Wert +1 schon bei monoton wachsenden Beobachtungen, d.h. es gilt für alle (xi,yi), (xj,yj): mit xi < xj ist auch yi < yj

Korrelation Bsp. Klausur- und Übungspunkte Einfachere Formel für den Spearman‘schen Korrelationskoeffizienten (falls alle xi und yi verschieden sind (und di=R(xi)–R(yi)):

Korrelation Bsp. Maturanoten Mathe, Deutsch, Englisch Mathe Deutsch 1 0,23 0,382 0,576

Korrelation Yulesche Assoziationskoeffizient für eine Vierfeldertafel (X,Y) nominal skaliert Häufigkeitsverteilung von (X,Y) Es gilt: -1 ≤ AXY ≤ +1; falls ein hij=0, so gilt: |AXY|=1; Vorzeichen nur in Verbindung Vierfeldertafel interpretierbar

Korrelation Bsp. Geschlecht – Raucher/Nichtraucher Leicht positiver Zusammenhang zw. Merkmalsausprägungen „w“ und „R“ R N-R  w 9 32 41 m 5 27 14 59 73

Korrelation Bsp. Geschlecht – Raucher/Nichtraucher Leicht negativer Zusammenhang zw. Merkmalsausprägungen „m“ und „R“ R N-R  m 5 27 32 w 9 41 14 59 73

Wahrscheinlichkeitsrechung Betrachte Ereignisse die nicht deterministisch (vorherbestimmbar) sind, Ereignisse mit Zufallscharakter. Bsp. Werfen eines idealen Würfels, Werfen einer fairen Münze, … Oder Ereignisse, die von so vielen Einflussfaktoren abhängen, dass das Ergebnis nicht sicher bestimmt werden kann.

Wahrscheinlichkeitsrechung Grundbegriffe: Zufallsexperiment: Vorgang nach einer bestimmten Vorschrift ausgeführt, beliebig oft wiederholbar, Ergebnis hängt vom Zufall ab, bei mehrmaligen Durchführung des Experiments beeinflussen die Ergebnisse einander nicht – unabhängig voneinander. (z.B. Münzwurf, Werfen eines Würfels, …)

Wahrscheinlichkeitsrechung Elementarereignisse (Realisationen) Zufallsexperiment: Reihe aller möglichen elementarer Ereignisse {e1},…,{en} Ereignisraum S: Menge der Elementarereignisse S={e1,…,en} Ereignis: Jede beliebige Teilmenge des Ereignisraumes (setzt sich aus einem od. mehreren Elementarereignissen zusammen)

Wahrscheinlichkeitsrechung Vereinigung Vereinigung von 2 Ereignissen A und B: AUB Menge aller Elementarereignisse, die zu A oder B gehören Durchschnitt Durchschnitt von 2 Ereignissen A und B: A∩B Menge aller Elementarereignisse, die zu A und B gehören Disjunkte Ereignisse 2 Ereignisse A und B schließen einander aus, A∩B=Ø (Ø unmögliches Ereignis) Komplementärereignis Menge aller Elementarereignisse des Ereignisraumes S, die nicht in Ereignis A enthalten sind

Wahrscheinlichkeitsrechung Wahrscheinlichkeit ist ein Maß zur Quantifizierung der Sicherheit bzw. Unsicherheit des Eintretens eines bestimmten Ereignisses im Rahmen eines Zufallsexperiments.

Wahrscheinlichkeitsrechung Klassischer Wahrscheinlichkeitsbegriff: Bsp. Urne mit 10 Kugeln (8 rot, 2 schwarz) Gesucht: Wahrscheinlichkeit, dass eine zufällig gezogene Kugel rot ist (Ereignis A) Ereignisraum 10 mögl. Elementarereignisse, 8 günstige Fälle W(A) = 8 / 10 = 0,8

Wahrscheinlichkeitsrechung Statistischer Wahrscheinlichkeitsbegriff: Grenzwert der relativen Häufigkeiten des Auftretens von A

Wahrscheinlichkeitsrechung Subjektiver Wahrscheinlichkeitsbegriff: Ereignissen werden „Wettchancen“ zugeordnet. Quote für A ist a:b, dann ergibt sich die Wahrscheinlichkeiten

Wahrscheinlichkeitsrechung Axiomatischer Wahrscheinlichkeitsbegriff: Definition von mathematischen Eigenschaften 1. 0 ≤ W(A) ≤ 1 2. W(S) = 1 3. A und B disjunkt: W(A U B) = W(A) + W(B)

Zufallsvariable Zufallsvariable: Variable deren Wert vom Zufall abhängt (z.B. X, Y, Z) Bsp. Zufallsexperiment: 2-maliges Werfen einer Münze. Frage: Wie oft erscheint „Zahl“? Mögliche Werte: 0, 1, 2. Variable „Anzahl Zahl“ hängt vom Zufall ab – Zufallsvariable. Realisation (Ausprägung): Wert, den eine Zufallsvariable X annimmt (z.B. x, y, z). Bsp. 2-maliges Werfen einer Münze, ZV X „Anzahl Zahl“, Ausprägungen: x1=0, x2=1, x3=2.

Zufallsvariable Zufallsvariable: Funktion, die jedem Elementarereignis eine bestimmt reelle Zahl zuordnet, z.B. X(ej)=xi Definitionsbereich einer ZV: Ereignisraum S des zugrundeliegenden Zufallsexperiments. Wertebereich einer ZV: Menge der reellen Zahlen.

Zufallsvariable Diskrete Zufallsvariable: ZV mit endlich vielen oder abzählbar unendlich vielen Ausprägungen Stetige Zufallsvariable: können (zumindest in einem bestimmten Bereich der reellen Zahlen) jeden beliebigen Zahlenwert annehmen.

Wahrscheinlichkeit Diskrete Zufallsvariable: Wahrscheinlichkeit, mit der eine diskrete ZV X eine spezielle Ausprägung xi annimmt, W(X=xi): Summe der Wahrscheinlichkeiten derjenigen Elementarereignisse ej, denen Ausprägung xi zugeordnet ist:

Wahrscheinlichkeitsfunktion Wahrscheinlichkeitsfunktion einer diskreten ZV: Funktion f(xi), die für jede Ausprägung der ZV (unterschiedliche Ausprägungen xi einer ZV X) die Wahrscheinlichkeit ihres Auftretens angibt: f(xi) = W(X=xi) Eigenschaften: f(xi) ≥ 0 i=1,2,… Σi f(xi) = 1

Verteilungsfunktion Verteilungsfunktion einer diskreten ZV: Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Es gilt: Treppenfunktion

Verteilungsfunktion Verteilungsfunktion einer stetigen ZV (kann in einem bestimmten Intervall jeden beliebigen Wert annehmen): Funktion F(x), die die Wahrscheinlichkeit dafür angibt, dass die ZV X höchstens den Wert x annimmt. F(x) = W(X ≤ x) Stetige Funktion

Verteilungsfunktion Eigenschaften einer stetigen Vt-Funktion: 1. 0 ≤ F(x) ≤ 1 2. F(x) ist monoton wachsend (d.h. für x1 < x2 gilt F(x1) ≤ F(x2) 3. lim x→-∞ F(x) = 0 4. lim x→∞ F(x) = 1 5. F(x) ist überall stetig

Wahrscheinlichkeitsdichte Wahrscheinlichkeitsdichte (Dichtefunktion) f(x) einer stetigen ZV: Ableitung der Verteilungsfunktion. Es gilt:

Wahrscheinlichkeitsdichte Eigenschaften: 1. f(x) ≥ 0 2. 3. 4. W(X=x) = 0 5. W(a ≤ X ≤ b) = W(a < X < b) 6. W(X ≤ a) = F(a) W(X ≤ b) = F(b) W(a ≤ X ≤ b) = F(b) – F(a)