Mechanismus der basischen Hydrolyse

Slides:



Advertisements
Ähnliche Präsentationen
was sind Säuren und Basen ?
Advertisements

Der pH-Wert einer wässriger Lösung gibt an, wie stark sauer oder basisch (alkalisch) die Lösung ist.
Hemmung Es ist bekannt, dass Enzyme sehr spezifisch reagieren. Trotzdem können manchmal auch Substanzen mit dem Enzym in Wechselwirkung treten, bei denen.
Einleitung & Abgrenzung
Cope-Umlagerung Oxy-Cope-Umlagerung
Die Umwandlung von Chorismat in Prephenat stellt
Säuren und Basen Lp / 2011/12.
Erweiterte Grundlagen, aktuelle Forschung
Erweiterte Grundlagen, aktuelle Forschung
Säuren und Basen -Definitionen -Pearson-Konzept -Lewis-Säure
Organometallchemie : Erweiterte Grundlagen, aktuelle Forschung und Anwendungen Hauptgruppen 8. Stunde.
Spezifität Warum verwenden Organismen Enzyme als Katalysatoren?
Cofaktoren.
Optima der Enzymaktivität
Ambidente Nukleophile
Messwerte: Was sagen sie eigentlich aus?
Der Templateffekt Seminarvortrag ACV – Alexander Wachter.
Ammoniak und Ammoniaklösung
Mechanismus der Eliminierung
Haben Sie heute schon trainiert?
Biodiesel Quelle: de.wikipedia.org
Seminarvortrag von Jürgen Bachl, Thimo Huber und Petr Jirasek
Reaktionskinetik-Einführung
Reaktionsmechanismen - Nucleophile Substitution am sp3-C
Gleichgewichtsreaktionen
Reaktionsmechanismen Elektrophile aromatische Substitution
Kohlensäure und ihre Salze
Anorganische Reaktionsmechanismen in Lösungen
Elektrische Ladung des Komplexes
Definition: Einheiten aus einem Zentralteilchen und den daran gebundenen Molekülen oder Ionen, sog. Liganden (lat. ligare = binden) nennt man Komplexe.
Ligandensubstitution in quadratisch-planaren Komplexen
Der Zusammenhang zwischen der kinetischen Reaktionsordnung und dem Reaktionsmechanismus ist oft dadurch verkompliziert, dass das Lösungsmittel selbst als.
Anorganische Reaktionsmechanismen in Lösungen
Anorganische Reaktionsmechanismen in Lösungen
Beispiel: c c Quelle: R.G. Wilkins.
Vortrag OCF Einige Reduktionsmethoden in der organischen Chemie
Cofaktoren und Coenzyme
Säuren und Basen Was sind Säuren und Basen? Was ist der pH-Wert?
Bilder und Text haben wir zum Teil von Thomas Seilnacht übernommen,
Protonenvermittelte Esterbildung – protonenvermittelte Esterhydrolyse
Aldoladdition Hydroxid-Ion
Nucleophile Substitution: SN2-Reaktion
Additionsreaktionen an die C=C-Doppelbindung 1. Addition von Brom
Definition Reaktionsgeschwindigkeit
“Inner-sphere electron transfer“: IUPAC
Heterocyclen.
Säuren, Basen und pH-Werte
Gleichgewichtsreaktionen
REAKTIONSKINETIK.
Ionen-, Molekül- und Metallbindungen
Deutung der Arrhenius-Gleichung für eine bimolekulare Reaktion
Säure-Base-Gleichgewichte II
6. Kohlenwasserstoffe – Alkane, Alkene, Alkine, Arene – Molekülbau, Reaktionen und Herstellung Moleküle, die nur Kohlenstoff und Wasserstoff enthalten,
Halogenderivate der Kohlenwasserstoffe
Elektronik Lösungen.
“Inner-sphere electron transfer“: IUPAC Historically an electron transfer between two metal centres sharing a ligand or atom in their respective coordination.
Reaktionsmechanismen - Addition an C-C-Doppelbindungen
Ligandensubstitution in oktaedrischen Komplexen: 7 Beweise für den dissoziativen Mechanismus: Elektronische Gründe Einfluss der eintretenden Gruppe auf.
Reaktionsmechanismen - Eliminierung zu C-C-Doppelbindungen
Reaktionsmechanismen Reaktionen der C-O-Doppelbindung
2 Die chemische Bindung 2.2 Die Atombindung
3 Das chemische Gleichgewicht 3
Elektrochemische Thermodynamik
Mechanismus der basischen Hydrolyse
Substitutionsreaktionen bei Übergangsmetallkomplexen
Beispiel: c c Quelle: R.G. Wilkins. Theoretische Berechnungen zur Polymerisation von Vinylacetat W.H. Stockmayer, The Steady State Approximation in Polymerization.
Proseminar Organische Chemie MB
Anorganisch-chemisches Praktikum
Moleküle-Viergewinnt
L5&L AC2 A. Soi.
 Präsentation transkript:

Mechanismus der basischen Hydrolyse Unterscheidet sich stark von dem der sauren Hydrolyse Co3+ Komplexe mit NH3 oder Aminen als Liganden hydrolysieren oberhalb pH=4 wesentlich rascher als in sauren Lösungen Das Geschwindigkeitsgesetz ist immer 2. Ordnung: Würde auf einen assoziativen Mechanismus hinweisen, dies ist aber nicht der Fall! Beweis für einen dissoziativen Mechanismus: Sterischer Effekt - Je größer der Amin-Ligand, desto rascher die Reaktion.

Wieso kann ein dissoziativer Mechanismus zu einem Geschwindigkeitsgesetz 2. Ordnung führen? Der NH3 Ligand wird dadurch, dass er an Co3+ koordiniert ist, fähiger, ein H+ abzuspalten In wässr. Lsg ist das OH- -Ion nicht imstande, NH3 zum NH2- Ion zu deprotonieren. Ist aber das NH3 Molekül an das Co3+ koordiniert, so zieht das positiv geladene Metallion Elektronendichte vom NH3 ab, sodass es saurer wird und ein Amid-Ion entstehen kann Dies ist sehr oft die Art Änderung der Liganden-Reaktivität, die in Übergangsmetall-Katalysatoren und Metalloenzymen wirksam ist.

Liganden-Substitution unter Beteiligung mehrzähniger Liganden Der Ersatz von 2 koordinierten Wassermolekülen durch einen zweizähnigen Liganden L-L erfolgt in zwei aufeinanderfolgenden Schritten. Man kann die Steady-State Näherung auf die Zwischenverbindung anwenden:

L-L

a) k2>>k-1 In dem Fall ist kf=k1 Dann ist die Gesamt-Reaktionsgeschwindigkeit der Chelatbildung durch die Bildung der M-L-L Zwischenverbindung bestimmt und die Reaktion ist durch dieselben Faktoren kontrolliert wie eine Substitutionsreaktion mit einem einzähnigen Liganden. k bei 25°C für die Komplexbildung von Ni2+ mit py, bpy und tpy sind sehr ähnlich, obwohl Komplexe mit keinem, einem, bzw. zwei Chelatringen gebildet werden. k=4x103, 1.5x103, 1.4x103 M-1s-1

b) k2<<k-1 In dem Fall ist kf=k1k2/k-1 der geschwindigkeitsbestimmende Schritt ist die Bildung des Chelatringes z.B. wenn die Bildung des Chelatringes sterisch gehindert ist Beispiel: bei der Komplexierung von Ni2+ (pH=8; [Ni2+]=100 mM) durch sulfoniertes 2-pyridylazo-1-naphtol ist der Ringschluss sehr langsam (k≈25 s-1) 3 zähniger Ligand, Ringbildung erfolgt durch die ortho-OH Gruppe, die Azo-Gruppe, das heterozyklische N-Atom und das Metallion

Wenn der ringschließende Arm protoniert ist, und interne Wasserstoffbrücken gebrochen werden müssen: Reaktion von protoniertem 3,5Dinitrosalicylat mit Ni2+ k=3.8x102 M-1s-1. Mit unprotoniertem 3,5 Dinitrosalicylat ist die Reaktion wesentlich rascher, k=3.1x104 M-1s-1 Anwendung der Steady State Näherung auf die beiden Zwischenverbindungen ergibt: Die Frage ist, ob der Bruch der H-Brückenbindung in Reaktionsschritt 2 oder der Ringschluss in Reaktionsschritt 3 geschwindigkeitsbestimmend ist. (Quelle: R.G. Wilkins)

Effekt des pH auf die Geschwindigkeit der Substitution bei Chelatkomplexen Das Verhalten eines Chelatliganden L und seiner protonierten Form LH+ ist unterschiedlich Sowohl die Bildung als auch die Hydrolyse von Chelatkomplexen ist daher in der Regel pH-abhängig weil gewöhnlich K1<<1, gilt: K2>>K3 kinetischen Messungen an Metallkomplexen (Ni2+, Cr3+) von Polyaminen zeigten, dass auch k2>>k3 In der umgekehrten Richtung kann ein Proton die Ringöffnung direkt unterstützen, oder auf dem Weg reaktiver protonierter Spezies

Metallionen-unterstützte Dissoziation (Hydrolyse) von Chelatkomplexen Metallionen können die Dissoziation von Komplexen mit multidentaten Liganden beschleunigen Der Reaktionsweg ist kompliziert und umfasst zweikernige Zwischenverbindungen, die M und M1 enthalten

D. W. Margerum, D. L. Janes, and H. M D. W. Margerum, D. L. Janes, and H. M. Rosen, Transfer of EDTA from Ni(II) to Cu(II), Journal of the American Chemical Society, 1965

Ligandensubstitution unter Beteiligung von Porphyrinen Konzept eines Reaktionswegs über einen sitting-atop (SAT) Komplex, wobei das reagierende Metallion mit den N Atomen des Porphyrinringes wechselwirkt, ohne dass die N-H Gruppen deprotoniert werden. Die Bildung des SAT Komplexes ist der geschwindigkeitsbestimmende Schritt. In einem raschen weiteren Schritt zerfällt der SAT Komplex zu den Produkten, wobei 2 Protonen freigesetzt werden. L4 M

Lit.: Fleischer EB, Dixon F Bioinorg Chem. 1977;7(2):129-39. Definitive evidence for the existence of the "sitting-atop" porphyrin complexes in nonaqueous solutions. Der SAT-Komplex wird als mit dem freien Metallion und Porphyrin in einem thermodynamischen Gleichgewicht existierendes Assoziat betrachtet, dessen Bildungskonstante stark mediumabhängig ist. Bestimmte Gruppen an der Peripherie des Porphyrins erleichtern die Inkorporation des Metallions in den Ring, indem sie mit dem Metallion ein Addukt bilden, das dann weiterreagiert. Beispiel: tmppH2 reagiert schnell mit Co(II), Cu(II), und Ni(II) in Dimethylformamid)/H2O: tmppH2 = meso-tetra- (4-myristyl oxyphenyl) porphyrin

Metall-Ionen unterstützte Bildung eines Metalloporphyrins: Route (B) Da man kein freies Porphyrin während des Austausches von M und M* beobachtet, muss es sich um einen assoziativen Prozess handeln. aus: Ralph G. Wilkins, Mechanisms of Reactions of Transition Metal Complexes, VCH, 1991

Isobestische Punkte bei UV-VIS Spektren Isobestische Punkte sind Wellenlängen, bei denen die Absorption konstant bleibt, während sich die Konzentrationen der Reaktanden und Produkte ändern: weisen darauf hin, dass keine nachweisbaren Zwischenverbindungen auftreten: synchroner Prozess . z.B. Reaktion von Hg(tpp) mit Zn2+ in Pyridin. Hier tritt die freie tpp Base nicht auf, sie hätte ein von beiden Komplexen unterschiedliches Spektrum. tpp = Tetraphenylporphyrin aus: Ralph G. Wilkins, Mechanisms of Reactions of Transition Metal Complexes, VCH, 1991

tppsH2 = meso-tetrakis (4-sulfonatophenyl)-porphyrin 13 aus: Ralph G. Wilkins, Mechanisms of Reactions of Transition Metal Complexes, VCH, 1991 tppsH2 = meso-tetrakis (4-sulfonatophenyl)-porphyrin

Die Reaktion von Mn2+ mit tppsH24- in Wasser ist sehr langsam. Die Aufnahme von Mn2+ in den Porphyrinring wird jedoch stark beschleunigt durch die Gegenwart kleiner Mengen von Cd2+ Ionen, die als Katalysator wirken

Die Reaktion von Cd2+ mit tppsH24- ist rasch, denn das größere Metallion bildet einen out-of-plane Komplex. Dieser kann wiederum leicht durch das stärker bindende Mn2+ attackiert werden. ----------------------------------------------------------------- Die Dissoziation der meisten Metall-Porphyrine M(II)P ist sehr langsam. H+ beschleunigen die Entfernung des Metallions. Häufig findet man folgendes Geschwindigkeitsgesetz:

Templat-Chemie Man kann Metallionen zur Herstellung von Makrozyklen benutzen (Templat-Effekt). Z.B.: Alkali- und Erdalkalimetallionen beschleunigen die Bildung von Benzo[18]crown-6 in Methanol

Stereochemie der oktaedrischen Substitution Die normale oktaedrische Substitution erfolgt unter Retention der Konfiguration Dies deutet darauf hin, dass die normale fünffach koordinierte Zwischenverbindung eine tetragonal pyramidale Struktur beibehält (quadratische Pyramide) In manchen Fällen ist der Substitutionsvorgang jedoch von einer stereochemischen Umwandlung begleitet, z.B. trans-[Co(NH3)4Cl2]+ + H2O ergibt 55% cis- und 45% trans-Produkt trans-[Co(en)2(OH)Cl]+ + H2O ergibt 75% cis und 25% trans-Produkt trans-[Co(en)2Br2]+ + H2O ergibt 30% cis und 70% trans-Produkt

Das Auftreten stereochemischer Umlagerungen kann durch die Annahme einer trigonal-bipyramidalen Struktur der fünffach koordinierten Zwischenverbindungen erklärt werden. Der Austritt von X wird durch die Bewegung eines Paares ursprünglich trans zueinander stehender Liganden begleitet, von denen jeder cis zur austretenden Gruppe X steht Es gibt 2 Möglichkeiten zur Bildung einer trigonalen Bipyramide Die eintretende Gruppe Y tritt entlang einer der trigonalen Kanten ein 6 mögliche Reaktionswege, 2 davon führen zur Wiederherstellung der relativen Positionen der Liganden im Komplex

Welche Liganden ermöglichen stereochemische Umwandlung? Voraussetzung ist das Vorhandensein eines Elektronenpaares in einem Orbital, dessen Symmetrie eine π-Bindung vom Liganden zum Metall ermöglicht, sobald das Umklappen von der quadratischen Pyramide zur trigonalen Bipyramide erfolgt ist: Stabilisierung des trigonalen ÜZ