Dr. R. Marklein - EFT I - SS 20031 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 8th Lecture / 8. Vorlesung University.

Slides:



Advertisements
Ähnliche Präsentationen
Numerik partieller Differentialgleichungen
Advertisements

Der Biegebalken Der Biegebalken
We have a magnetic field that it is very similar to the one of a dipole. Well in reality this is true close to the surface if we go far away enough it.
Numerical Methods in Electromagnetic Field Theory I (NFT I) / Numerische Methoden in der Elektromagnetischen Feldtheorie I (NFT I) 2nd Lecture / 2.
Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie II (NFT II) / 1st Lecture / 1.
Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 11th Lecture / 11. Vorlesung Dr.-Ing. René Marklein
Dr.-Ing. René Marklein - EFT I - SS 06 - Lecture 1 / Vorlesung 11 Electromagnetic Field Theory I (EFT I) / Elektromagnetische Feldtheorie I (EFT I) University.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 9 / Vorlesung 9 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 7th Lecture / 7. Vorlesung.
1 Dr. R. Marklein - NFT II - SS 2003 Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Di. 13:00-14:30 Uhr; R
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 4th Lecture / 4. Vorlesung.
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 6th Lecture / 6. Vorlesung.
Dr.-Ing. René Marklein - NFT I - Lecture 11 / Vorlesung 11 - WS 2005 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Di. 13:00-14:30 Uhr; R
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Dr.-Ing. René Marklein - NFT I - Lecture 10 / Vorlesung 10 - WS 2006 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Di. 13:00-14:30 Uhr; R
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 4 / Vorlesung 4 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Di. 13:00-14:30 Uhr; R
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 13 / Vorlesung 13 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT.
Dr.-Ing. R. Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Di. 13:00-14:30 Uhr; R (Hörsaal)
1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 7th Lecture / 7. Vorlesung.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 10 / Vorlesung 10 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT.
Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie II (NFT II) / 2nd Lecture / 2.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Numerical Methods in Electromagnetic Field Theory I (NFT I) / Numerische Methoden in der Elektromagnetischen Feldtheorie I (NFT I) 2nd Lecture / 2.
Zu Kap I.8.3. Formale Lösung mit Greenscher Funktion
PC II für Biochemiker Eberhard-Karls-Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Prof. Dr. J. Enderlein,
Lösungsweg: Satz von Gauß
Universität Stuttgart Wissensverarbeitung und Numerik I nstitut für K ernenergetik und E nergiesysteme Numerik partieller Differentialgleichungen, SS 01Teil.
Präsentation der Software FlexPDE5
Anfang Präsentation 2. Februar, 2005 Behandlung von Unstetigkeiten II Wir wollen uns heute nochmals mit der Modellierung von Unstetigkeiten befassen. Zunächst.
Die Feldstärke.
Engineering tools for the NEO engineer
Dr.-Ing. René Marklein - NFT I - WS 06/07 - Lecture 6 / Vorlesung 6 1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der.
Dr.-Ing. René Marklein - NFT I - L 9 / V 9 - WS 2006 / Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 12 / Vorlesung 12 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT.
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 3rd Lecture / 3. Vorlesung.
Freiraum und Mehrwegausbreitung
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 7 / Vorlesung 7 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 12th Lecture / 12. Vorlesung.
Dr.-Ing. René Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R
Noch mehr Funktionen Prof. Dr. Dörte Haftendorn, Leuphana Universität Lüneburg,
1 Dr. R. Marklein - NFT II - SS 2003 Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie.
1 Bauhaus-Universität Weimar ArchitekturProgrammierung Generative Entwurfsmethoden Processing Grundlagen Professur Informatik in der Architektur.
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 2 / Vorlesung 2 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I)
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 5th Lecture / 5. Vorlesung.
Elektrodynamik WS 2009/2010 Martin E. Garcia
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 11 / Vorlesung 11 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT.
Dr.-Ing. R. Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R (Hörsaal)
Dr.-Ing. René Marklein - NFT I - WS 06/07 - Lecture 4 / Vorlesung 4 1 Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der.
Dr.-Ing. R. Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R (Hörsaal)
Dr.-Ing. René Marklein - EFT I - WS 06/07 - Lecture 1 / Vorlesung 11 Electromagnetic Field Theory I (EFT I) / Elektromagnetische Feldtheorie I (EFT I)
Dr.-Ing. R. Marklein - GET I - WS 06/07 - V Grundlagen der Elektrotechnik I (GET I) Vorlesung am Fr. 08:30-10:00 Uhr; R (Hörsaal)
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 9th Lecture / 9. Vorlesung.
Dr.-Ing. René Marklein - EFT I - WS 06 - Lecture 6 / Vorlesung 6 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 6th.
Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 12th Lecture / 12. Vorlesung Dr.-Ing. René Marklein
Physik multimedial Lehr- und Lernmodule für das Studium der Physik als Nebenfach Julika Mimkes: Links to e-learning content for.
Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 9th Lecture / 9. Vorlesung Dr.-Ing. René Marklein
Dr.-Ing. René Marklein - EFT I - SS 06 - Lecture 4 / Vorlesung 4 1 Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 4th.
Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 5th Lecture / 5. Vorlesung.
Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 10th Lecture / 10. Vorlesung Dr.-Ing. René Marklein
MP-41 Teil 2: Physik exotischer Kerne, SS-2013 MP-41 Teil 2: Physik exotischer Kerne 19.4.Einführung 26.4.Beschleuniger 3.5.Schwerionenreaktionen, Synthese.
Forces Maintaining Equilibrium or Changing Motion.
CERN – TUD – GSI Webmeeting
Course in Summer Semester 2017
 Präsentation transkript:

Dr. R. Marklein - EFT I - SS Elektromagnetische Feldtheorie I (EFT I) / Electromagnetic Field Theory I (EFT I) 8th Lecture / 8. Vorlesung University of Kassel Dept. Electrical Engineering / Computer Science (FB 16) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 71 Office: Room 2113 / 2115 D Kassel Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 16) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 71 Büro: Raum 2113 / 2115 D Kassel Dr.-Ing. René Marklein

Dr. R. Marklein - EFT I - SS Medium (2) Medium (1) Medium Transition Conditions / Übergangsbedingungen Boundary Conditions / Randbedingungen ws: with sources; sf = source-free / mq = mit Quellen; qf = quellenfrei pec = perfectly electric conducting / iel = ideal elektrisch leitend ES Fields – Transition and Boundary Conditions / ES Felder – Übergangs- und Randbedingungen

Dr. R. Marklein - EFT I - SS Medium (2) Medium (1) Medium Transition Conditions / Übergangsbedingungen Boundary Conditions / Randbedingungen ws: with sources; sf = source-free / mq = mit Quellen; qf = quellenfrei pec = perfectly electric conducting / iel = ideal elektrisch leitend ES Fields – Transition and Boundary Conditions / ES Felder – Übergangs- und Randbedingungen

Dr. R. Marklein - EFT I - SS Medium (2) Medium (1) Medium Transition Conditions / Übergangsbedingungen Boundary Conditions / Randbedingungen ES Fields – Transition and Boundary Conditions / ES Felder – Übergangs- und Randbedingungen

Dr. R. Marklein - EFT I - SS Boundary Conditions / Randbedingungen Medium Electrostatic (ES) Fields / Elektrostatische (ES) Felder Dirichlet Boundary Conditions for Ф e / Dirichlet-Randbedingung für Ф e Neumann Boundary Conditions for Ф e / Neumann-Randbedingung für Ф e

Dr. R. Marklein - EFT I - SS Electrostatic (ES) Fields – Boundary Value Problem (BVP) / Elektrostatische (ES) Felder – Randwertproblem (RWP) Examples: / Beispiele: Separation of Variables / Separation der Variablen ! Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Conditions (BC) / Randbedingungen (RB)

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung Between the Plates: Vacuum / Zwischen den Platten: Vakuum... Cartesian Coordinates /... Kartesische Koordinaten... Because of the Symmetry /... wegen der Symmetrie Between the Plates Laplace Equation: Zwischen den Platten: Laplace-Gleichung Boundary Conditions (BC) / Randbedingungen (RB) Boundary Conditions (BC) / Randbedingungen (RB) Partial Differential Equation / Partielle Differentialgleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Condition (BC) / Randbedingung (RB) Integrating once / Integriere einmal Integrating twice / Zweifache Integration ergibt Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Condition (BC) / Randbedingung (RB) Boundary Conditions (BC) / Randbedingungen (RB) Solution for the Electrostatic Potential / Lösung für das elektrostatische Potential Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Condition (BC) / Randbedingung (RB) Boundary Conditions (BC) / Randbedingungen (RB) Partial Differential Equation (PDE) / Partielle Differentialgleichung (DGL) Solution for the Electrostatic Potential / Lösung für das elektrostatische Potential Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Condition (BC) / Randbedingung (RB) Electrostatic Potential / Elektrostatisches Potential The Electrostatic Potential and Electrostatic Field Strenth are Discontinuous at the Plates / Das elektrostatisches Potential und die elektrostatische Feldstärke sind unstetig an den Platten Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Representation of the Electrostatic Field Strenth using the Unit Step Functions: / Darstellung der elektrostatischen Feldstärke durch Einheitssprungfunktionen: Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung Step Functions / Einheitssprungfunktionen

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung

Dr. R. Marklein - EFT I - SS ES Fields – Electrostatic Field Between Two Parallel PEC Plates / ES Felder – Elektrostatisches Feld zwischen zwei parallelen IEL Platten Boundary Value Problem (BVP) – Electrostatic Poisson Equation / Randwertproblem (RWP) – Elektrostatische Poisson-Gleichung Electric Surface Charge Density / Elektrische Flächenladungsdichte Between the Plates: Vacuum / Zwischen den Platten: Vakuum Boundary Condition (BC) / Randbedingung (RB)

Dr. R. Marklein - EFT I - SS Electrostatic (ES) Fields / Elektrostatische (ES) Felder Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... (2) Application: Numerical Solution of Unbounded Static Problems / Anwendung: Numerische Lösung von unbegrenzten statischen Problemen Problem: Parallel Plate Capacitor in an Unbounded Region / Problem: Paralleler Plattenkondensator in einem unbegrenzten Gebiet Electrostatic Surface Charges / Elektrostatische Flächenladungen Parallel Plates / Parallele Platten Numerical Solution: We need to Specify Boundary Conditions at the Boundaries of the Simulation Area which is always bounded. / Numerische Lösung: Wir müssen für die Ränder des numerischen Simulationsgebietes, welches immer begrenzt ist, Randbedingungen spezifizieren. Outline of the Problem / Entwurf des Problems Boundary Condition (BC) ? / Randbedingung (RB) ? Open Boundary Condition (OBC) ? / Offene Rand- bedingung (ORB) ?

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole / Punktladung(en): Mono-, Di- und Quadrupol Electrostatic (ES) Fields / Elektrostatische (ES) Felder Monopole / Monopol One Point Charge / Eine Punktladung Dipole / Dipol Two Point Charges / Zwei Punktladungen Quadrupole / Quadrupol Four Point Charges / Vier Punktladungen

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder Arbitrary Point Charge / Beliebige Punktsladungsverteilungen

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... Electrostatic (ES) Fields / Elektrostatische (ES) Felder Arbitrary Point Charge / Beliebige Punktsladungsverteilungen Monopole Moment / Monopolmoment Dipole Moment / Dipolmoment Quadrupole Moment / Quadrupolmoment

Dr. R. Marklein - EFT I - SS Point Charge(s): Monopole, Dipole, and Quadrupole / Punktladung(en): Mono-, Di- und Quadrupol Electrostatic (ES) Fields / Elektrostatische (ES) Felder Monopole Moment / Monopolmoment One Point Charge / Eine Punktladung Dipole Moment / Dipolmoment Two Point Charges / Zwei Punktladungen Quadrupole Moment/ Quadrupolmoment Four Point Charges / Vier Punktladungen

Dr. R. Marklein - EFT I - SS Electrostatic Dipole / Elektrostatischer Dipol Electrostatic (ES) Fields / Elektrostatische (ES) Felder Electrostatic Dipole Moment / Elektrische Dipolmoment Distance Vector / Abstandsvektor Electrostatic Volume Charge Density / Elektrostatische Raumladungsdichte Electrostatic Potential / Elektrostatisches Potential Electrostatic Field Strength / Elektrostatische Feldstärke

Dr. R. Marklein - EFT I - SS Electrostatic Dipole / Elektrostatischer Dipol Electrostatic (ES) Fields / Elektrostatische (ES) Felder Electrostatic Dipole Moment / Elektrostatisches Dipolmoment with / mit Electrostatic Quadrupole Moment / Elektrostatisches Quadrupolmoment

Dr. R. Marklein - EFT I - SS Electrostatic (ES) Fields / Elektrostatische (ES) Felder Point Charge(s): Monopole, Dipole, and Quadrupole … / Punktladung(en): Mono-, Di- und Quadrupol... (2) Application: Numerical Solution of Unbounded Static Problems / Anwendung: Numerische Lösung von unbegrenzten statischen Problemen With Dirichlet Boundary Condition / Mit Dirichlet Randbedingung With Open Boundary Condition (OBC) / Mit offener Randbedingung (ORB)

Dr. R. Marklein - EFT I - SS ES Fields – Method of Images / ES-Felder – Spiegelungsmethode Medium Boundary Value Problem (BVP) – Randwertproblem (RWP)

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder Medium Problem: Solution / Lösung: Image Charge / Spiegelladung

Dr. R. Marklein - EFT I - SS ES Fields – Method of Images / ES Felder – Spiegelungsmethode Medium Solution by Applying the Method of Images / Lösung durch Anwendung der Spiegelungsmethode Image Charge / Spiegelladung

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder Medium – – – – – – – + PEC / IEL Induced Electrostatic Surface Charge Density / Induzierte (influezierte) elektrostatische Flächenladungsdichte (Influenz) Field Lines of E / Feldlinien von E Without the Method of Images we have to Solve the Following Integral Equation for the Unknown Induced Electrostatic Surface Charge / Ohne die Spiegelungsmethode muss man die folgende Integralgleichung für die induzierte (influezierte) elektrostatische Flächenladungsdichte lösen Unknown / Unbekannt

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder Medium – – – – – – – + PEC / IEL Induced Electrostatic Surface Charge Density / Induzierte (influezierte) elektrostatische Flächenladungsdichte (Influenz) Field Lines of E / Feldlinien von E If D is known from the Method of Images / Falls D über die Spiegelungsmethode bekannt ist η e (R) is Defined by the Normal Component of D / η e (R) ist definiert über die Normalkomponente von D !

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder

Dr. R. Marklein - EFT I - SS Method of Images / Spiegelungsmethode Electrostatic (ES) Fields / Elektrostatische (ES) Felder Total Electric Charge at the xy Plane at z=0 / Gesamtladung auf der xy Ebene bei z=0

Dr. R. Marklein - EFT I - SS ES Fields – Method of Images – Applications / ES Felder – Spiegelungsmethode – Anwendungen Earth / Erde Singular Point / Singulärer Punkt Ionosphere / Ionosphäre Vertical Stream / Vertikalstrom Dipole Layer / Dipolschicht

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables – Example / Elektrostatische (ES) Felder – Separation der Variablen – Beispiel Separation of Variables / Separation der Variablen !

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables / Elektrostatische (ES) Felder – Separation der Variablen Laplace Equation / Laplace-Gleichung 3-D / 3D 2-D / 2D Elliptic Partial Differential Equation / Elliptische partielle Differentialgleichung Laplace Equation in Cartesian Coordinates / Laplace-Gleichung in Kartesischen Koordinaten Function of Three Variables / Funktion von drei Variablen Function of Two Variables / Funktion von zwei Variablen

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables / Elektrostatische (ES) Felder – Separation der Variablen Laplace Equation / Laplace-Gleichung / Solution Strategy:Reduce the Partial Differential Equation (PDE) to an Ordinary Differential Equation (ODE) and Find a Solution of the PDE by Solving the ODE Lösungsstrategie:Reduziere die partielle Differentialgleichung (PDG) auf eine gewöhnliche (ordinäre) Differentialgleichung (GDG) und finde eine Lösung der PDG durch Lösung der GDG Ansatz of Separation / Separationsansatz Function of 2 Variables: x and y / Funktion von 2 Variablen: x und y Function of x only / Nur eine Funktion von x Function of y only / Nur eine Funktion von y Product of 2 Functions / Produkt aus 2 Funktionen

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables / Elektrostatische (ES) Felder – Separation der Variablen Laplace Equation / Laplace-Gleichung Ansatz of Separation / Separationsansatz Inserted in the Above Laplace Equation Yields / Eingesetzt in die obere Laplace-Gleichung ergibt

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables / Elektrostatische (ES) Felder – Separation der Variablen Separation Condition / Separationsbedingung

Dr. R. Marklein - EFT I - SS ES Fields / ES Felder Poisson and Laplace Equation / Poisson- und Laplace-Gleichung (3) Electrostatic (ES) Fields – Separation of Variables / Elektrostatische (ES) Felder – Separation der Variablen Separation Condition / Separationsbedingung We Obtain Two ODE / Wir erhalten zwei GDG With / Mit Solutions of these Equations are / Lösungen dieser Gleichungen sind For k = 0 these Solutions Degenerate to / Für k = 0 diese Lösungen degenerieren zu

Dr. R. Marklein - EFT I - SS End of 8th Lecture / Ende der 8. Vorlesung