Kapitel V. Determinanten

Slides:



Advertisements
Ähnliche Präsentationen
Schnelle Matrizenoperationen von Christian Büttner
Advertisements

Die Beschreibung von Bewegungen
Lösung von linearen Gleichungssystemen - Grundlagen
Kapitel 5 Stetigkeit.
Folie 1 Kapitel II. Vom Raumbegriff zu algebraischen Strukturen Neubeginn: Herleitung des Begriffs Vektorraum aus intuitiven Vorstellungen über den Raumbegriff.
Folie 1 § 30 Erste Anwendungen (30.2) Rangberechnung: Zur Rangberechnung wird man häufig die elementaren Umformungen verwenden. (30.1) Cramersche Regel:
§9 Der affine Raum – Teil 2: Geraden
§ 28 Multilineare und Alternierende Abbildungen
§9 Der affine Raum – Teil 2: Geraden
§11 Skalarprodukt. Euklidische Räume
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Kapitel V. Determinanten
Folie 1 § 29 Determinanten: Eigenschaften und Berechnung (29.1) Definition: Eine Determinantenfunktion auf K nxn ist eine Abbildung (im Falle char(K) ungleich.
§ 29 Determinanten: Eigenschaften und Berechnung
Tutorium
Matrix-Algebra Grundlagen 1. Matrizen und Vektoren
§10 Vektorraum. Definition und Beispiele
§17 Produkte und Quotienten von Vektorräumen
§24 Affine Koordinatensysteme
Lineare Algebra Komplizierte technologische Abläufe können übersichtlich mit Matrizen dargestellt werden. Prof. Dr. E. Larek
Beweissysteme Hartmut Klauck Universität Frankfurt WS 06/
§10 Vektorraum. Definition und Beispiele
§20 Der Rang einer Matrix Jede (m,n)-Matrix kann auch als ein n-Tupel von Spaltenvektoren geschrieben werden: wobei (20.1) Definition:
Folie 1 § 28 Multilineare und Alternierende Abbildungen (28.1) Definition: V und W seien wieder ein K-Vektorräume. Eine Abbildung von V nach W stets linear.
Folie 1 Kapitel IV. Matrizen Inhalt: Matrizen als eigenständige mathematische Objekte Zusammenhang zwischen Matrizen und linearen Abbildungen Produkt von.
§23 Basiswechsel und allgemeine lineare Gruppe
§3 Allgemeine lineare Gleichungssysteme
Das Spatprodukt I. Definition des Spats II. Herleitung und Berechnung des Spatprodukts III. Anwendungen des Spatprodukts.
Multivariate Statistische Verfahren
Determinanten und Cramer‘sche Regel
§22 Invertierbare Matrizen und Äquivalenz von Matrizen
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Folie 1 §21 Das Produkt von Matrizen (21.1) Definition: Für eine (m,n)-Matrix A und eine (n,s)-Matrix B ist das (Matrizen-) Produkt AB definiert als (21.2)
Prof. Dr. Walter Kiel Fachhochschule Ansbach
Graphische Datenverarbeitung
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Seminar im Fach Geoinformation IV
Lineare Algebra II (MAVT)
DG5 - Angittern Aufgabenstellung: Buch Raumgeometrie Seite 43 Übung 5.1, 6b Schnitt einer Gerade mit Parallelogramm, beide allgemeine Lage Gerade: g (G1(6/-4/0),
Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2
Logik in der Informatik V
Thema: Flächenberechnung Heute: Die Fläche des Trapezes
Einführung in die Differentialrechnung
Wiederholung Breitensuche BFS mit Startknoten s Tiefensuche
Organisatorisches DiMa für Master of Science Mathe anrechenbar
Einführung in die Differentialrechnung
Kapitel IV. Matrizen Inhalt:
§17 Produkte und Quotienten von Vektorräumen
§23 Basiswechsel und allgemeine lineare Gruppe
Thema: Terme und Variablen Heute: Gleichungen aufstellen und lösen
Thema: Terme und Variablen Heute: Termbeschreibungen
Kollisionsuntersuchung konvexer Polyeder
§ 25 Bilinearformen und spezielle Koordinaten
Thema: Terme und Variablen Heute: Gleichungen aufstellen und lösen
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Pflichtteil 2016 Aufgabe 6: Gegeben ist die Gerade
Das Vektorprodukt Wir definieren erneut eine Multiplikation zwischen zwei Vektoren, das Vektorprodukt, nicht zu verwechseln mit dem Skalarprodukt. Schreibe.
Aufgabe 1) Der Graph der Funktion
Wahlteil 2016 – Aufgabe B 1 Aufgabe B 1.1 In einem Koordinatensystem beschreiben die Punkte
§11 Skalarprodukt. Euklidische Räume
Kapitel I. Vorspann zum Begriff Vektorraum
§19 Matrizen als lineare Abbildungen
Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 2.1 und B Lösungen.
Aufstellen und Lösen von Gleichungen
Horst Steibl, Salzgitter,
Schnitt Ebene/Ebene Voraussetzungen Die Ebenen
Umfang und Flächeninhalt von Rechtecken
Kapitel II. Vom Raumbegriff zu algebraischen Strukturen
Herleitung der Formel zur Berechnung von Winkeln zwischen 2 Vektoren
 Präsentation transkript:

Kapitel V. Determinanten Inhalt: Alternierende Formen Permutationen Determinanten Lineare Gleichungssysteme Anwendungen

§ 26 Inhaltsmessung von Parallelogrammen In diesem Paragrafen soll die Einführung der Determinante über einen geometrischen Ansatz motiviert werden. Es geht um die Eigenschaften des Flächeninhalts von Parallelogrammen in der euklidischen Ebene. Die Ebene wird durch R2 repräsentiert, ein Parallelogramm wird durch 2 Vektoren gegeben: Wir bezeichnen mit F(v,w) die Fläche von dem von v und w aufgespannten Parallelogramm P. w v P Dabei soll F(v,w) gerichtet sein, insofern, als F(v,w) = -F(w,v) gilt. Zum Beispiel: F(v,w) positiv, wenn v vor w im Gegenuhrzeigersinn.

Kapitel V, §26 Elementargeometrische Überlegungen zeigen: F(v + u,w) = F(v,w) + F(u,w) w v P u Und ebenso: F(v,w + z) = F(v,w) + F(v,z) Weiterhin: F(v,sw) = sF(v,w) = F(sv,w) für positive s . w v -v Schließlich: F(-v,w) = -F(v,w) = F(v,-w)

Kapitel V, §26 Insgesamt: F ist bilinear und alternierend, dh. F(v,w) = -F(w,v) Daher: F(v,w) = F11v1w1 + F21v2w1 + F12v1w2 + F22v2w2 mit F11 = 0 = F22 und F12 = - F21 , weil F alternierend. Daher gilt F(v,w) = s(v1w2 – v2w1) mit einer Konstanten s . Mit der Festlegung F(e1,e2) = 1 (Normierung von F, so dass das Ein-heitsquadrat den Flächeninhalt 1 erhält) wird diese Konstante zu 1 : F(v,w) = Δ(v1,w1,v2,w2) (vgl. §1) =: det(v,w) Die beiden Spaltenvektoren v,w lassen sich als die Spaltenvektoren von (2,2)-Matrizen A = (v,w) verstehen. Insofern definiert det eine Abbildung

Kapitel V, §26 Eigenschaften von det : (26.1) Satz: Für A aus R2x2 gilt: (26.2) Korollar: Für A aus R2x2: (26.3) Satz: Für A,B aus R2x2 : det (AB) = (det A)(det B) . (26.4) Satz von Cayley: Für A aus R2x2 ist wobei tr A := a + d (Spur von A) . (26.5) Satz: Für A,B,C aus R2x2 : 1o (AB –BA)2 = (det(AB –BA))E 2o (AB –BA)2C = C(AB –BA)2 . Im übrigen ist det auch bilinear in den Zeilenvektoren.