Kapitel IV. Matrizen Inhalt:

Slides:



Advertisements
Ähnliche Präsentationen
Vorlesung Compilertechnik Sommersemester 2008
Advertisements

2.3 Kodierung von Zeichen 2.4 Kodierung von Zahlen
Schnelle Matrizenoperationen von Christian Büttner
13. Transformationen mit Matrizen
Kapitel 5 Stetigkeit.
Kapitel 1 Die natürlichen und die ganze Zahlen. Kapitel 1: Die natürlichen und die ganzen Zahlen © Beutelspacher/Zschiegner April 2005 Seite 2 Inhalt.
Folie 1 Kapitel II. Vom Raumbegriff zu algebraischen Strukturen Neubeginn: Herleitung des Begriffs Vektorraum aus intuitiven Vorstellungen über den Raumbegriff.
§14 Basis und Dimension (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
Folie 1 § 30 Erste Anwendungen (30.2) Rangberechnung: Zur Rangberechnung wird man häufig die elementaren Umformungen verwenden. (30.1) Cramersche Regel:
§9 Der affine Raum – Teil 2: Geraden
§ 28 Multilineare und Alternierende Abbildungen
§9 Der affine Raum – Teil 2: Geraden
§14 Basis und Dimension  (14.1) Definition: V sei wieder ein K-Vektorraum. Eine Menge B von Vektoren aus V heißt Basis von V, wenn B ist Erzeugendensystem.
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Kapitel V. Determinanten
Folie 1 § 29 Determinanten: Eigenschaften und Berechnung (29.1) Definition: Eine Determinantenfunktion auf K nxn ist eine Abbildung (im Falle char(K) ungleich.
§ 29 Determinanten: Eigenschaften und Berechnung
Tutorium
Matrix-Algebra Grundlagen 1. Matrizen und Vektoren
§10 Vektorraum. Definition und Beispiele
§17 Produkte und Quotienten von Vektorräumen
§24 Affine Koordinatensysteme
Vektoren Grundbegriffe für das Information Retrieval
Lineare Algebra Komplizierte technologische Abläufe können übersichtlich mit Matrizen dargestellt werden. Prof. Dr. E. Larek
§10 Vektorraum. Definition und Beispiele
§20 Der Rang einer Matrix Jede (m,n)-Matrix kann auch als ein n-Tupel von Spaltenvektoren geschrieben werden: wobei (20.1) Definition:
Folie 1 §15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn.
§15 Lineare Abbildungen (15.1) Definition: Eine Abbildung f zwischen K-Vektorräumen V und W ist linear (oder ein Vektorraumhomomorphismus), wenn für alle.
Folie 1 § 28 Multilineare und Alternierende Abbildungen (28.1) Definition: V und W seien wieder ein K-Vektorräume. Eine Abbildung von V nach W stets linear.
Folie 1 Kapitel IV. Matrizen Inhalt: Matrizen als eigenständige mathematische Objekte Zusammenhang zwischen Matrizen und linearen Abbildungen Produkt von.
§23 Basiswechsel und allgemeine lineare Gruppe
§3 Allgemeine lineare Gleichungssysteme
Einführung in die Matrizenrechnung
Institut für Theoretische Informatik
Institut für Theoretische Informatik
Kapitel 10 Multikollinearität
Multivariate Statistische Verfahren
ENDLICHE KÖRPER RSA – VERFAHREN.
Automaten, formale Sprachen und Berechenbarkeit II SoSe 2004 Prof. W. Brauer Teil 3: Potenzreihen und kontextfreie Sprachen (Vgl. Buch von A. Salomaa)
§22 Invertierbare Matrizen und Äquivalenz von Matrizen
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Folie 1 §21 Das Produkt von Matrizen (21.1) Definition: Für eine (m,n)-Matrix A und eine (n,s)-Matrix B ist das (Matrizen-) Produkt AB definiert als (21.2)
Lineare Algebra 11. Matrizen Eine m  n-Matrix ist ein Raster aus m  n Koeffizienten, die in m Zeilen und n Spalten angeordnet sind. = (a ij )
Graphische Datenverarbeitung
8. Vektoren. 8. Vektoren Ortsvektor oder Polarvektor.
Folie 1 §8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein.
1 Matrizenrechnung 1Einführung 2Begriff der Matrix und spezielle Matrizen 3Relationen 4Operationen 1Transponierte Matrix 2Addition (Subtraktion) 3Multiplikation.
§8 Gruppen und Körper (8.1) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres.
Lineare Algebra II (MAVT)
Sprechfunkausbildung
Christian Scheideler WS 2008
Organisatorisches DiMa für Master of Science Mathe anrechenbar
Erste Lektion in angewandter
§17 Produkte und Quotienten von Vektorräumen
§23 Basiswechsel und allgemeine lineare Gruppe
Asymptoten Asymptoten sind Näherungsgeraden, denen sich der Kurvenverlauf einer Funktion annähert. Es gibt waagrechte, senkrechte und schiefe Asymptoten.
§ 25 Bilinearformen und spezielle Koordinaten
§ 27 Permutationen Zur Beschreibung von alternierenden multilinearen Abbildungen und insbesondere für den begriff der Determinante benötigen wir die Permutationen.
Pflichtteil 2016 Aufgabe 6: Gegeben ist die Gerade
Das Vektorprodukt Wir definieren erneut eine Multiplikation zwischen zwei Vektoren, das Vektorprodukt, nicht zu verwechseln mit dem Skalarprodukt. Schreibe.
3. Die Datenstruktur Graph 3.3 Durchlaufen von Graphen
§11 Skalarprodukt. Euklidische Räume
Kapitel I. Vorspann zum Begriff Vektorraum
§19 Matrizen als lineare Abbildungen
Kapitel V. Determinanten
Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 2.1 und B Lösungen.
DB2 – SS 2019 von Baum allgemein bis B*-Baum
Kapitel II. Vom Raumbegriff zu algebraischen Strukturen
DB2 – SS 2019 von Baum allgemein bis B*-Baum
Rechenausdrücke (Terme) – Fachbegriffe - Rechenregeln
 Präsentation transkript:

Kapitel IV. Matrizen Inhalt: Matrizen als eigenständige mathematische Objekte Zusammenhang zwischen Matrizen und linearen Abbildungen Produkt von Matrizen Inverse Matrix Basiswechsel

§18 Der Vektorraum der Matrizen Im folgenden ist K stets ein Körper und V, W, ... sind Vektorräume über K . Matrizen lassen sich einführen als Hilfsmittel zur Beschreibung von linearen Abbildungen und auch als solche untersuchen (vgl. § 19). Wir wollen Matrizen zunächst als eigenständige mathematische Objekte verstehen. Wichtig, wie an vielen Stellen in Mathematik und Physik, sind dazu die Indizes und Doppelindizes: (18.1) Notation: n bezeichne im folgenden den durch n aus N bestimmten Abschnitt der natürlichen Zahlen, also die Menge n := {1, 2, ... , n} Das „fett n“ wird dabei auch normal geschrieben. Also: n = {1, 2, ... , n} und

Kapitel IV, §18 (18.2) Definition: Eine (m,n)-Matrix A (mit Koeffizienten aus K) ist eine Abbildung Eine solche Matrix A ist also durch die Werte vollständig bestimmt. Bemerkung: Diese Werte – und damit die Matrix A – können auf verschiedene Wiese notiert werden. In der Regel in einem „Rechteckschema“: An diese Notation werden wir uns halten. (Eine Vertauschung von n und m wäre auch denkbar, eine Aneinanderreihung der Werte in einer Zeile oder in einer Spalte wäre ebenfalls korrekt, - aber unüblich.)

Kapitel IV, §18 Die Schreibweise der Koeffizienten A(i,j) ist beliebig. Ziemlich verbreitet ist es, die A(i,j) mit kleinem Buchstaben und tiefgestellten Indizes zu schreiben, zumindestens in der Mathematik: Je nach Anwendung sind aber auch aij , aij oder aij gebräuchlich. Also statt A(i,j) : aij . Unsere Konvention (Physikernotation in Falle von Koordinaten eines Konfigurationsraumes) in Abweichung von Kap. I - III: (18.3) Bemerkungen: Die Menge aller (m,n)-Matrizen ist Kmxn ; sie besitzt daher in natürlicher Weise die Struktur eines K-Vektorraums. Addition: Für A und B aus Kmxn ist Skalarmultiplikation: Für A aus Kmxn und t aus K ist

Kapitel IV, §18 (18.4) Lemma: Für natürliche Zahlen genau mn Elemente. Durch f(i,j) := (j - 1)n + i , , wird eine Bijektion Definiert (sukzessives Durchzählen der Reihen). (18.5) Folgerung: Der Vektorraum Kmxn der (m,n)-Matrizen hat die Dimension mn . Er ist isomorph zu Kmn und auch zu (Km)n und (Kn)m. Die Standardbasis von Kmxn ist {Eji : i aus m und j aus n} , wobei Eji ist die folgende Matrix: In der Zeile i lauter Nullen außer einer 1 in Position j (Spalte j); ansonsten nur Nullen. Anders ausgedrückt: Alle Spalten sind 0 außer der j-ten Spalte. Diese ist der i-te Standardeinheitsvektor von Km . Es gilt für A aus Kmxn :