Einführung in die empirische Bildungsforschung

Slides:



Advertisements
Ähnliche Präsentationen
Identifizierung und Ausbildung von Führungskräften
Advertisements

H - A - M - L - E - T Handlungsmuster von Lehrerinnen und Lehrern beim Einsatz neuer Medien im Unterricht der Fächer Deutsch, Mathematik und Informatik.
Fulda J. Pabst - BAK 1 Aktuelle Tendenzen in der Lehrerbildung I Fördern und Fordern – eine Herausforderung für Bildungspolitik, Eltern, Schule und.
Experimente im Sachunterricht
Zum Leitbild der Abendschule Vor dem Holstentor
Die Fragen müssen lauten:
Interkulturelle Kompetenz der Lehr- und Fachkräfte LWL Münster 10./
Kompetenzorientierter Mathematikunterricht
Effiziente Klassenführung
TU- Dresden Dipl. Psych. Jenny Krist Prof. Dr. Hermann Körndle
Mythen über Schulqualität
ETEP Entwicklungstherapie / Entwicklungspädagogik =
"Der Mensch ist das einzige Geschöpf, das erzogen werden muss" – Über (schulische) Erziehung Referenten: Björn Anton: Andy Caspar Michael.
Was ist guter Unterricht?
III Unterrichtsentwicklung in einer professionell arbeitenden Schule - Chancen, Instrumente und Probleme - Hans Leutert Oft werden Sprecher dadurch.
Teil 2 Marco Fileccia Kurze Wiederholung Teil 1 Prinzip Gruppenbildung
Zeitgemäßer Mathematik-unterricht mit dem Mathematikbuch
Kompetenzorientierung im Geschichtsunterricht
Vhb-Projekt: Erziehung zur Medienkompetenz Schulische Medienerziehung Virtuelles Seminar Referenten: Simon Pannarale/Christoph Sauter Prof. Dr. Dieter.
Konzept der Fort- und Weiterbildung für die SeelsorgerInnen im Bistum Münster Hauptabteilung 500, Seelsorge - Personal Gruppe 512, Fortbildung Hermann.
Sportdidaktik I © 2004 Univ.-Prof. Dr. Helmut Altenberger.
Reform der Notengebung
Gütekriterien des Unterrichts
Professionelles Lehrerhandeln
Forum Gemeinschaftsschule – Zukunft gestalten
Selbstorganisiertes Lernen (SOL)
Hoher Anteil an echter Lernzeit
Was ist guter Unterricht
Beraten. Fördern. Unterstützen
Individuelle Lernpläne
Unterrichtsbeobachtung und Bewertung: Kriterien guten Unterrichts
Merkmale einer neuen Lernkultur
Die professionelle Lerngemeinschaft
Einführung in das BLK-Programm SINUS – Grundschule
Qualitätstableau des Landes NRW
MINT-Lernzentrum: Unterricht lernwirksam gestalten
professioneller Akteur
Qualität und Evaluation im Unterricht
erfolgreicher Kompetenzerwerb
Claus H. Brasch & Martina Propf
Worin zeigt sich kompetenzorientierter Religionsunterricht?
EXTERNE EVALUATION RÜCKMELDEKONFERENZ Grundschule Am Appelbach
... den Kindern das Wort geben der Klassenrat ...
Vergleichsarbeiten in der Grundschule
Das Europäische Sprachenportfolio
Ein Programm zur Förderung von Lernstrategien
Einführung in die allgemeine Didaktik / Fachdidaktik
What works? Die Synthese von Hattie (2009)
SPRACHERWERB in FÜNF FERTIGKEITEN. 1. Hören 2. Lesen 3. An Gesprächen teilnehmen 4. Zusammenhängend sprechen 5. Schreiben.
Kompetenzorientiert fortbilden –kompetenzorientiert unterrichten
Arbeiten mit Kompetenzrastern und Checklisten
Auswertung des Fragebogens für Videobeobachter/innen
Mit InES die interne Evaluation in Schulen unterstützen
Classroom Management Techniken
„Strukturiertheit“ ist erfolgreiches Lernen
Merkmale guten (Deutsch)Unterrichts
Unterrichten J+S-Leiterkurs Basketball.
I. Schulgemeinschaft leben II. Persönlichkeitsentwicklung fördern
Modul 1: Wie formuliere ich Ziele und Schwerpunkte für die Implementierung einer veränderten Lehr-/Lernkultur.
Projektbüro für förder- und kompetenzorientierten Unterricht
Unterrichtsbeobachtung Führung in der erweiterten Schulleitung
Theoretische Schlüsselkonzepte
Warum Lehren, das dem Lernen hilft, Kommunizieren und nicht Produzieren sein sollte Prof. Dr. Renate Girmes Universität Magdeburg.
Controlling : Die Themen
Wer wird Millionär?. A:B: C:D: Wofür steht die Abkürzung „PA“? Praxisbilder/inPraxisbegleiter/in Praxisweiterbilder/inPraxisausbilder/in 1 MILLION 500.
Kooperatives Lernen.
Motivation (3) Mitarbeitsmotivation
Prof. Dr. Andreas Voss, Hochschule für Angewandte Wissenschaften (HAW) Hamburg Präsentation am Freitag, 27. März 2009, TU Dortmund, Fakultät Erziehungswissenschaft.
Köster `11 Studienseminar Köln Studienseminar Köln Gy/Ge Thema der 2. Sitzung im Kernseminar: Die kriteriengeleitete Unterrichtsbeobachtung.
Studienseminar Köln Gy/Ge Herzlich Willkommen zur Kernseminarveranstaltung Thema: Unterrichtsstörungen – Teil 1.
 Präsentation transkript:

Einführung in die empirische Bildungsforschung Mo, 8.15 – 9.45 IPN Hörsaal Empirische Unterrichtsforschung: Rahmenmodelle zu Determinanten von Schulleistungen Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Literatur Helmke, A. (2003). Unterrichtsqualität. Erfassen, bewerten, verbessern. Großburgwedel: Kallmeyer. Köller, O. (2008). Lehr-Lern-Forschung. In W. Schneider & M. Hassel- horn (Hrsg.), Handbuch Pädagogische Psychologie (S. 210 – 222). Göttingen: Hogrefe. Meyer, H. (2004). Was ist guter Unterricht? Berlin: Cornelsen. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Überblick Ziele schulischer Arbeit und Grundsätze verständnisvollen Lernens nach Baumert u. a. (2004) Paradigmen der Unterrichtsforschung Ein Angebot-Nutzungs-Modell von Andreas Helmke (2003) Was ist guter Unterricht? Prinzipien effektiver Klassenführung nach Jacob Kounin 10 Kriterien nach Hilbert Meyer Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Ziele schulischen Arbeitens Auf der Basis eines erfolgreichen Unterrichts sollten ... Schülerinnen und Schüler umfangreiches fachspezifisches Wissen und fachspezifische Kompetenzen aufbauen, Lernstrategien und die Fähigkeit zum selbstregulierten Lernen trainiert werden, lernförderliche motivationale Orientierungen und Interessen entwickelt werden, ein hohes schulisches Selbstvertrauen, kombiniert mit einem hohen Maß an Selbstwirksamkeitserleben gefördert werden, soziale Kompetenzen (z. B. Kooperation und prosoziales Verhalten) aufgebaut und Wertorientierungen vermittelt werden. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Verständnisvolles Lernen: Baumert et al. (2004) aktiver individueller Konstruktionsprozess, in dem Wissensstruk-turen verändert, erweitert, vernetzt, hierarchisch geordnet oder neu generiert werden. entscheidend ist die aktive mentale Verarbeitung, die sich in der handelnden Auseinandersetzung mit der sozialen oder natürlichen Umwelt oder im Umgang mit Symbolsystemen vollzieht. sinnstiftend, indem neue Zusammenhänge erschlossen werden, die Wissen organisieren und ordnen. Dazu gehört, dass der Gegenstand für die Lernenden ein Mindestmaß an intellektueller und/oder praktischer Bedeutung besitzt. abhängig von den individuellen kognitiven Voraussetzungen, vor allem vom bereichsspezifischen Vorwissen. Umfang und Organisation der verfügbaren Wissensbasis entscheiden über Qualität und Leichtigkeit des Weiterlernens. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Verständnisvolles Lernen: Baumert et al. (2004) Verständnisvolles Lernen erfolgt trotz aller Systematik stets auch situiert und kontextuiert. Die Situiertheit begrenzt oft die Anwend-barkeit erworbenen Wissens. Um den Anwendungsbereich zu erweitern, ist eine Variation der Erwerbs- und Anwendungskontexte notwendig. Verständnisvolles Lernen wird durch Motivation und metakognitive Prozesse (z.B. Planung, Kontrolle, Bewertung) reguliert. Verständnisvolles Lernen wird durch kognitive Entlastungsmecha-nismen unterstützt. Dazu gehören die durch multiple Repräsenta-tion förderbare Herausbildung informationsreicher Wissensein-heiten, die als Ganzes erinnert und abgerufen werden können (Chunks), sowie die Automatisierung von Handlungsabläufen und Denkvorgängen. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Paradigmen der Unterrichtsforschung: 1. Persönlichkeitsparadigma Im Persönlichkeitsparadigma, das in den Anfängen der Lehr-Lernforschung dominierte, wurde nach typischen Eigenschaften der positiven Lehrerpersönlichkeit gesucht. Die Frage nach stabilen, situations- und zeitüberdauernden lernförderlichen Führungs- und Unterrichtsstilen stand im Vordergrund der Bemühungen. Insgesamt greift das Persönlichkeitsparadigma aber zu kurz (Helmke, 2003), da es zu wenig auf mediierende Variablen zwischen der Lehrerpersönlichkeit und den Schülerleistungen geschaut hat. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Paradigmen der Unterrichtsforschung: 2. Prozess-Produkt-Paradigma Im Prozess-Produkt-Paradigma wird versucht, zwischen Unterrichtsmaßen (Prozess), die häufig aus Unterrichts-beobachtungen gewonnen werden, und Produktmaßen (Leistungen, Kompetenzzuwachs, Lernmotivation etc.) Zusammenhänge herzustellen. Das Prozess-Produkt-Paradigma stellt aktuell immer noch einen sehr fruchtbaren Untersuchungsansatz dar und wurde beispielsweise auch in der kürzlich vorgestellten DESI-Untersuchung (DESI-Konsortium, 2006) verwendet. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Paradigmen der Unterrichtsforschung: 3. Expertenparadigma Im Experten-Paradigma wird auf Seiten der Lehrkräfte systematisch untersucht, wie Handlungsroutinen aufgebaut und Professionalisierungsschritte vollzogen werden. Lehrkräfte werden als Experten für das Unterrichten verstanden und in Studien werden die Handlungsroutinen erfahrener Lehrkräfte mit denen von jungen unerfahrenen Kolleginnen und Kollegen verglichen. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Paradigmen der Unterrichtsforschung: 3. Expertenparadigma Vier Felder, in denen Lehrkräfte Expertise aufbauen müssen, um Lernprozesse zu unterstützen (vgl. Helmke, 2003): fachwissenschaftliche Expertise fachdidaktische Expertise, Expertise in der Klassenführung und diagnostische Expertise. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Angebot-Nutzungs-Modell (Helmke, 2003) Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Prinzipien effektiver Klassenführung Kounin (1970) Allgegenwärtigkeit der Lehrkraft (Withitness): Lehrkraft registriert alles, auch wenn sie nicht auf alles reagiert Schüler wissen und dies und akzeptieren den Führungsanspruch Reibungslosigkeit und Schwung (Momentum) gleichmäßiger Unterrichtsfluss ohne unnötige Unterbrechungen wenig Leerlauf wenig Hektik durch zu hohe Geschwindigkeit Geschmeidigkeit des Ablaufs (Smoothness) Harmonischer Ablauf des Unterrichts ohne Brüche Überlappung von inhaltlicher Arbeit, Regelung von Organisationskram und Störungsprävention (Overlapping) Mehrere Dinge gleichzeitig tun Zügige Erledigung von Organisatorischem bei Fortfahren des Unterrichts, Disziplinierungen erfolgen nebenbei Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Prinzipien effektiver Klassenführung Kounin (1970) Die ganze Lerngruppe im Blick (Group Focus): Auch bei Zuwendung zu einem Einzelschüler hat die Lehrkraft weiterhin das Geschehen in der Klasse im Griff. Geschicktes Management der Übergänge (Managing Transitions) Der Übergang von einem zum anderen Unterrichtsschritt ist eindeutig organisiert Stundenanfäge und –abschlüsse sind klar zu erkennen Abwechslungsreiche und anspruchsvolle Einzelarbeit Kurze, methodisch phantasievoll gestaltete Einzelarbeitsphasen Passgenaue Formulierung und angemessenes Anspruchsniveau Erkennen und Vermeiden vorgetäuschter Schüleraufmerksamkeit (Avoiding Mock Participation) Interessante Inhalte und geschickte Arbeitsaufträge vermeiden vorgespielte Aufmerksamket Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Guter Unterricht nach Meyer (2004) Guter Unterricht beinhaltet eine demokratische Unterrichtskultur, basiert auf dem Erziehungsauftrag, hat ein gelingendes Arbeitsbündnis zum Ziel, stiftet Sinnorientierung und leistet einen Beitrag zur nachhaltigen Kompetenzentwicklung aller Schülerinnen und Schüler. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

10 Merkmale guten Unterrichts nach Meyer (2004) Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

10 Merkmale guten Unterrichts nach Meyer (2004) Klare Strukturierung des Unterrichts (Prozess-, Ziel- und Inhaltsklarheit, Rollenklarheit, Absprache von Regeln, Ritualen und Freiräumen) Hoher Anteil echter Lernzeit (durch gutes Zeitmanagement, Pünktlichkeit, Auslagerung von Organisationskram, Rhythmisierung des Tagesablaufes) Lernförderliches Klima (durch gegenseitigen Respekt, verlässlich eingehaltene Regeln, Verantwortungsübernahme, Gerechtigkeit und Fürsorge) Inhaltliche Klarheit (durch Verständlichkeit der Aufgabenstellung, Plausibilität des thematischen Ganges, Klarheit und Verbindlichkeit der Ergebnissicherung) Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

10 Merkmale guten Unterrichts nach Meyer (2004) Sinnstiftendes Kommunizieren (durch Planungsbeteiligung, Gesprächskultur, Sinnkonferenzen, Lerntagebücher und Schülerfeedback) Methodenvielfalt (Reichtum an Inszenierungstechniken, Vielfalt der Handlungsmuster, Variabilität der Verlaufsformen und Ausbalancierung der methodischen Grundformen) Individuelles Fördern (durch Freiräume, Geduld und Zeit, durch innere Differenzierung und Integration, durch individuelle Lernstandsanalysen und abgestimmte Förderpläne, besondere Förderung von Schülern aus Risikogruppen) Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

10 Merkmale guten Unterrichts nach Meyer (2004) Intelligentes Üben (durch Bewusstmachen von Lernstrategien, passgenaue Übungsaufträge, gezielte Hilfestellungen) Transparente Leistungserwartungen (durch ein an den Richtlinien und Bildungsstandards orientiertes, dem Leistungsvermögen der Schüler entsprechendes Lernangebot und zügige förderorientierte Rückmeldungen zum Lernfortschritt) Vorbereitete Umgebung (durch gute Ordnung, funktionale Einrichtung und brauchbares Lernwerkzeug) Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Basisdimensionen von Unterrichtsqualität Effizienz der Klassenführung Unterricht als komplexe soziale Situation (Simultanität, Unvorhersagbarkeit, …) Klassenführung = Koordination und Steuerung dieses komplexen Geschehens mit dem Ziel, die zur Verfügung stehende Lernzeit optimal für Lernaktivitäten zu nutzen (Evertson & Weinstein, 2006) Aktuelle Ansätze: Präventive Steuerung des Klassengeschehens, nicht reaktiver Umgang mit Störungen (bereits bei Kounin, 1970) „withitness“ - Allgegenwärtigkeit der Lehrkraft, aufkeimenden Störungen präventiv einzugreifen und den tatsächlichen Urheber frühzeitig zu erkennen Flüssige Übergänge und gute Vorbereitung; Etablierung von Regelsystemen Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Basisdimensionen von Unterrichtsqualität Kognitive Aktivierung Anregungspotenzial zum vertieften Nachdenken und zur aktiven mentalen Auseinandersetzung mit den Unterrichtsgegenständen Herausfordernde Aufgabenstellungen, zum Nachdenken anregende Gesprächsführung Dadurch aktive Erweiterung und Veränderung von Wissensstrukturen anregen Nicht gemeint: hohe allgemeine Aktivität der Lernenden z.B. Wahlfreiheit bei der Sitzordnung, Möglichkeit zur aktiven Umgang mit Unterrichtsmaterialen Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Basisdimensionen von Unterrichtsqualität Konstruktive Unterstützung Veränderung des eigenen Wissens erfordert unterstützende Lernumgebung Strukturierung Gliederung komplexer Sachverhalte – Anforderungen an Lernende anpassen Strukturierende adaptive, individuelle Hilfestellungen Feedback/Formatives Assessment Emotionale und motivationale Unterstützung Sensibilität für Verständnisprobleme Geduld bei individuellen Schwierigkeiten; konstruktiver Umgang mit Fehlern Ansprechbarkeit bei sozialen Schwierigkeiten Reiser, 2004; Pintrich, Marx & Boyle, 1993 Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Ein Modell professioneller Handlungskompetenz* (Baumert u.a., Shulman) *Mareike Kunter, Jürgen Baumert, Werner Blum, Uta Klusmann, Stefan Krauss, Michael Neubrand (Hrsg.). Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV. Münster: Waxmann Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Professionelle Handlungskompetenz entsteht aus dem spezifischem Zusammenspiel von spezifischem deklarativen und prozeduralen Wissen, professionellen Werten, Überzeugungen, subjektiven Theorien, normativen Präferenzen und Zielen, motivationalen Orientierungen, metakognitiven Fähigkeiten und professioneller Selbstregulation. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Modell professioneller Handlungskompetenz Selbstregulative Fähigkeiten Überzeugungen/ Werthaltungen Professions- wissen Motivationale Orientierungen Fachwissen Wissens- bereiche Organisations- wissen Beratungs- Pädago- gisches Wissen facetten Fachdidakt. Wisen Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Mathematisches Fachwissen (Content Knowledge) Akademisches Forschungswissen Profundes mathematisches Verständnis des Schulstoffs* Typen des Fachwissens (Baumert u.a., Shulman) Schulwissen Alltagswissen Mathematik *Elementarmathematik vom höheren Standpunkt Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Fachdidaktisches Wissen (Pedagogical Content Knowledge) Fachdidaktisches Wissen ist pädagogisch-psychologisch orientiertes mathematisches Wissen darüber, wie Mathematik Schülerinnen und Schülern zugänglich gemacht werden kann. Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Gilt 0,999999.... = 1 ? Bitte begründen Sie Ihre Entscheidung! Beispielitem zur Feststellung des Fachwissens Gilt 0,999999.... = 1 ? Bitte begründen Sie Ihre Entscheidung! Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Lösungen Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Beispielitem für fachdidaktisches Wissen Eine Schülerin sagt: Ich verstehe nicht, warum ist. Bitte versuchen Sie Ihrer Schülerin diesen Sachverhalt auf möglichst vielen verschiedenen Wegen verständlich zu machen. Erklären, Darstellen und Repräsentieren mathematischer Sachverhalte Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

„Mathematische Definitionen nachschauen“  richtig  falsch 1 = (-1) ∙ -1 -2 2 +1 (-2) „Das ist eben so!“ „Das ist etwas, was gelernt und angewendet werden muss und nicht etwas, was erklärt werden muss“ „Multiplizieren mit -1 bedeutet ins Gegenteil umkehren: z.B. Kredit in Guthaben und umgekehrt. Das Gegenteil von -1 (Euro) ist 1 (Euro) Guthaben.“ „Man kann (-1) • (-1) auch als doppelte Verneinung verdeutlichen“ „Mathematische Definitionen nachschauen“ . Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Fachwissen, fachdidaktisches Wissen und Lernen in Mathematik (Black-Box-Modell) .60** .51** Fachdid. W. R2=.25 R2=.62 .49** Vorwissen . Mathematik- leistung T1 Klasse 9 T2 Klasse10 Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Befunde zu den Basisdimensionen FDW Klassen- führung + + Kognitives Potenzial + + Curriculares Niveau + + Konstruktive Unterstützung Mathematik- Leistung in Kl. 9 Mathematik- Leistung in Kl. 10 Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik

Vielen Dank für Ihre Aufmerksamkeit! Kontakt: koeller@ipn.uni-kiel.de Prof. Dr. Olaf Köller, Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik