Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin.

Slides:



Advertisements
Ähnliche Präsentationen
KODIN GmbH Heilbronner Str Gundelheim Tel
Advertisements

Der komplexe Begriff „Kraft“
ÜBUNGSZETTEL Aufgabe 1 (ABI BAYERN)
Schuljahr 2007/2008 Hannes Pfeiffer
Der Kohlenhydratabbau
Energiebereitstellung in der Muskelzelle
Energiefreisetzung in Lebewesen durch Atmung und Gärung
Zur Erinnerung... -Durch die Gluconeogenese wird aus kleinen Molekülen die nicht zu den Kohlenhydraten gehören (Glycerin, Aminosäuren, Lactat) Glucose.
Es ist soweit: Die Vorlesung Online!
NF Sport Trainingslehre „Energiebereitstellung – Basics“
(c)
Übungsaufgaben zur Ausdauer - Lösungen
Stoffwechsel M. Kresken.
VL Trainingswissenschaft 4. Ausdauer
VL Trainingswissenschaft 4. Ausdauer
VL Trainingswissenschaft 4. Ausdauer
VL Trainingswissenschaft 4. Ausdauer
VL Trainingswissenschaft 4. Ausdauer
VL Trainings- und Bewegungswissenschaft 3. Ausdauer
Ausdauersport Energieumsatz.
Die Zellatmung Ein Lernprogramm zur Erarbeitung einer Übersicht über die Energie liefernden Prozesse Lutz Wischeropp, 2001 weiter.
Das zentrale Thema der Trainingslehre im Pflichtfach Sport!
Stoffwechsel und Ernährung des Sportlers
Glykolyse Glukoseabbau bis zur Brenztraubensäure
Morphologisch (z.B. Energiespeicher, Muskelquerschnitt) Metabolisch
Stoffwechsel.
Ernährung Grundlagen.
Anatomischer Muskelaufbau
Organellenpräparation aus Saccharomyces cerevisiae

Eine Einführung in den Prozess der Zellatmung
Professionelle Prävention
Der Kohlenhydratabbau
Gasaustausch Partialdruck ist der Druck, den ein einzelnes Gas in einer Gasmischung ausübt.
VS.. Eigenschaften von Lebensmitteln und die darin enthaltenden Kohlenhydrate.
STEUERUNG DES AUSDAUERTRAININGS
Energie gibt es nicht alleine!
Fußball: Ein Leistungssport
Photosynthese, Teil 2.
Laktatmessungen bei Kindern und Jugendlichen – Sinn oder Unsinn?
TKTL1-Ernährungstherapie
Photosynthese - Übersicht
4. Stoff- und Energiehaushalt
Wie viel Gesundheit und Fitness braucht die Feuerwehr?
Gesundheit, Kondition und Ernährung
Sport in der Prävention
Ausdauer.
Energiebereitstellungsprozesse in der Muskulatur
Energiebereitstellung im Sport
Physiologie Energiehaushalt  ​.
Das Mitochondrium Größenverhältnisse Vorkommen Funktion Aufbau.
BLOCK 2 Energiebereitstellung Anaerobe Schwelle Pulsuhren Conconi-Test
Was sind Oligosaccharide? Was sind Zuckergetränke?
Photosynthese Assimilation Chemosynthese AUFBAU ORGANISCHER SUBSTANZ.
Ernährung.
Nach der Verdauung gelangen Kohlenhydrate (Glucose) ins Blut. Der Blutzuckerspiegel steigt an, überschüssige Kohlenhydrate werden in der Muskulatur.
Samstag, 30. Januar 2016 Zeit Inhalt „Einatmen
Sportphysiologie.
TV-Triathlonabteilung Theorie ist, … wenn man trotzdem lacht! Die biologisch- / wissenschaftlichen Grundlagen der Trainingslehre. Hans-Jürgen Badior, Hans.
Sportmedizin Minden Zentrum für sportmedizinische Leistungsdiagnostik Präventiv- und Rehamedizin Dr. rer. physiol. Dipl.-Ing. R. Berndt Dipl. Humanbiologe.
Energiegewinnung der Zelle
Energiebereitstellung im Muskel
ATP Energiestoffwechsel
Citratzyklus Einführung Pyruvat COO- C CH3 O Pyruvat
BLOCK 3 Besprechung Conconi-Test Laktat Schwellenlauf
Der Energielieferant Nr. 1
Energiebereitstellung
Leistungsdiagnostik Sebastian Heider, MSc..
 Präsentation transkript:

Energiebereitstellung in unterschiedlichen Sportarten Seminar Sportmedizin: Ernährung und Energiebereitstellung im Sport Referenten: Matthias Stumpf, Benjamin Heinrichs Seminarleiter: T. Albers, O. Faude

Gliederung 1. Grundlagen der Energiebereitstellung 2. Anaerob alaktazide E.b. 3. Anaerob laktazide E.b. 4. Aerobe (oxidative) E.b. 5. Zusammenfassung 6. Fazit

Grundlagen der Energiebereitstellung De Marées, H. (2003). Sportphysiologie, S. 341

Grundlagen der Energiebereitstellung Resynthese von ATP durch schrittweise Oxidation der Nährstoffe: – Zucker (Traubenzucker/ Glukose) – Fette (Fettsäuren) – gering: Eiweiße (Aminosäuren) Endprodukte: Harnstoff, Laktat, CO2, H2O und Wärme

Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 36

Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 39

Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 40

Grundlagen der Energiebereitstellung Jeukendrup AE, Gleeson M. (2004). Sports Nutrition, S. 40

Grundlagen der Energiebereitstellung Zwei Energiespeicher: Adenosintriphosphat (ATP) + Kreatinphosphat (KP) ATP = primärer, universeller Energielieferant sowie einziger direkt anzapfbarer Energiespeicher (in allen lebenden Zellen sowie in Muskelzellen) ATP beliefert direkt die Energie benötigenden Reaktionen  Voraussetzung für jede Art körperlicher Bewegung

Grundlagen der Energiebereitstellung ATP-Vorrat: 5 mmol ATP/kg Muskelfeuchtmasse (sehr geringe Menge an ATP in Muskelzelle gespeichert) = 3-4 Muskelkontraktionen (1-2 Sek. direkt verfügbar) Resynthese von ATP aus ADP: – aus Kreatinphosphat = anaerob alaktazid – über anaerobe E.b. = anaerob laktazid – über aerobe E.b. = aerobe Resynthese

Formen der Energiebereitstellung

Formen der Energiebereitstellung Zwei Hauptmechanismen der E.b.: Aerobe (oxidative) E.b.: Bildung von ATP unter O2-Verbrauch; in Mitochondrien Anaerobe E.b.: Bildung von ATP ohne O2-Verbrauch; im Sakroplasma

Anaerobe Energiebereitstellung Anaerobe E.b. erfolgt durch: a) Spaltung der gespeicherten energiereichen Phosphate ATP und KP = anaerob-alaktazid b) unvollständiger Abbau von Glukose unter Bildung von Laktat (anaerobe Glykolyse) = anaerob-laktazid ATP (ca. 2kcal) und KP (ca. 4-8 kcal)  Schnell verfügbar, jedoch nur für begrenzte Zeit (wenige Sekunden)

Anaerob alaktazide E.b. KP-Vorrat: größere Energiespeicher mmol KP/kg Muskelfeuchtgewicht = 5-6 Sek. Arbeitsdauer (+ ATP = 6-8 Sekunden) Durch die Übertragung der Phosphatgruppe des KP auf das ADP wird wieder ATP gebildet  Wiederauffüllung des ATP Speichers Diese Reaktion erfolgt während der Muskelkontraktion und läuft sehr schnell ab

Anaerob alaktazide E.b. - Beispiele pH-Wert: 7,4 Laktat 1 mmol/l 6-10 (max.15) Sekunden Maximal-/ Schnellkraft, Schnelligkeit Kugelstoßen Weitsprung Hochsprung Golf

Anaerob laktazide E.b. Anaerobe Glykolyse: unvollständiger Abbau von Glukose und Glykogen über Brenztraubensäure (Pyruvat = Salz der BTS) zu Laktat Bildung von Milchsäure (Laktat) normaler Wert: im Blut: pH-Wert = 7 im Muskel: 6,9 Energieausbeute: 3 mol ATP/mol Glukose aus Glykogen zwischen 15 und 45 (max. 60) Sekunden Kraft-/Schnelligkeitsausdauer

Anaerob laktazide E.b. Aufgrund dessen, dass mehr BTS vorhanden ist, als aerob verwertet werden kann, entsteht Laktat Doppelt so große ATP-Resynthese pro Zeiteinheit aus anaerober Glykolyse gegenüber aerober Oxidation Dadurch sinkt der pH-Wert des Blutes Ruhelaktatwerte zwischen 0,8-1,5 mmol/l Blut Max. Laktatwerte: mehr als 20 mmol/l Blut

Anaerob laktazide E.b. Laktat fällt immer an, jedoch bei einer Intensität von % der VO2 max. werden 70-90% des Laktats im Muskel oxidiert durch O2-Mangel am Anfang der Belastung oder durch Laktatanstiege in Bezug zur vermehrten BTS- Konzentration ohne einhergehende Sauerstoffschuld

Anaerob laktazide E.b. Eliminationsorte des Laktats: Belastete Muskulatur selbst (50%) Herzmuskel (15%) Inaktive Muskulatur (15%) In Leber (15%)

Anaerob laktazide E.b. Leistungsbegrenzend sind: Maximale dynamische Kraft der eingesetzten Muskulatur, sowie deren Koordination und Kontraktionsgeschwindigkeit Bildung der max. Energiemenge pro Zeiteinheit auf anaeroben Weg Größe des KP-Speichers Säuretoleranz des Sportlers

Anaerob laktazide E.b. De Marées, H. (2003). Sportphysiologie, S. 347

Anaerob laktazide E.b. Bsp.: 400m-Lauf Anfänglich hoher Abfall des KP Nach ca. 2s rasch ansteigende Glykolyserate bis zu 3 mmol/kg x s (Laktatbildung)  Azidose: Energiebedarf kann nicht vollständig über die Glykolyse und den oxidativen Stoffwechsel gedeckt werden

Anaerob laktazide E.b.  weiterer kontinuierlicher Abfall des KP  Abfall des ATP ( Abbruch oder Geschwindigkeitsverlust) Zunahme des aeroben Stoffwechselanteils auf ca %, ca % alaktazid, % laktazid

Anaerob laktazide E.b. De Marées, H. (2003). Sportphysiologie, S. 370

Anaerob laktazide E.b. Bsp.: 800-m-Lauf Weiterer Anstieg des oxidativen Stoffwechselanteils auf bis zu 50% Anaerob alaktazide Anteil dominiert zu Beginn der Belastung (bis zu 20%) Anaerob laktazide Anteil erreicht nach ca. 25 s sein Maximum, (bis zu 35%) Aerobe Energiebereitstellung steigt zum Ende hin an

Aerobe (oxidative) E.b. Bildung von ATP unter Verbrauch von Sauerstoff In Mitochondrien erfolgt durch vollständige Verbrennung (Oxidation) von: a) KH  Glukose durch Glykogenabbau = aerobe Glykolyse b) Fette  Fettsäuren (Betaoxidation) durch Fettspaltung (Lipolyse) jeweils zu CO2 und H2O Der Wasserstoff der Nährstoffe wird auf den Sauerstoff übertragen 31 mol ATP/mol Glukose aus Glykogen

5 Abbaustufen Glykogenolyse Glykolyse Bildung von aktivierter Essigsäure Trikarbonsäure- oder Zitronensäurezyklus Atmungskette

Gesamtbilanz De Marées, H. (2003). Sportphysiologie, S. 359

Zusammenfassung Aerob - Energiebereitstellung erfolgt relativ langsam - Die pro Zeiteinheit freigesetzte Energiemenge ist relativ klein + Die bereitgestellte Gesamtenergie ist relativ groß + 31 mol ATP/mol Glukose aus Glykogen Anaerob + Energiebereitstellung erfolgt relativ schnell + Die pro Zeiteinheit freigesetzte Energiemenge ist relativ groß -Gesamtenergiemenge ist relativ klein -3 mol ATP/mol Glukose aus Glykogen

Zusammenfassung De Marées, H. (2003). Sportphysiologie, S. 351

Beispielsportarten 30 Min Joggen: Aerob pH-Wert: 7,4 – 7,3 Laktat: 2-4 mmol/l Fussball: Meist aerob z.T. anaerob pH-Wert: 7,3 Laktat: 5-6 mmol/l 30 km Skilanglauf: Aerob pH-Wert: 7,4-7,3 Laktat: 8 mmol/l 2000m Rudern: Aerob pH-Wert: 7,2 Laktat: 10 mmol/l

Fazit Bei Muskelarbeit wird chemische Energie (ATP) in mechanische Energie und Wärme umgewandelt Je höher die Energieflussrate (ATP-Bildung pro Zeit), desto höher die Leistung Intensität und Dauer der maximal möglichen Leistung verhalten sich gegenläufig Die Nährstoffe Kohlenhydrate und Fette sind unsere Energiespeicher, die je nach Intensität und Dauer der körperlichen Belastung auf unterschiedliche Art zur Energiegewinnung herangezogen werden

Fazit Jede Sportart benötigt eine spezifische Energiebereitstellung, die mit dem Muskelfasertyp zusammenhängt Die Energiebereitstellung im Muskelstoffwechsel ist abhängig vom Trainingszustand und zum Teil auch von der Ernährung Je besser der Fettstoffwechsel trainiert ist, desto sparsamer kann die Muskulatur mit den wertvollen Glykogenreserven umgehen

Literatur Neumann, Pfützner, Berbalk (1999). Optimiertes Ausdauertraining. Mayer u Mayer: Aachen H., De Marées (2003). Sportphysiologie. Sport und Buch Strauss: Köln. Jeukendrup AE, Gleeson M. (2004). Sports Nutrition. Human Kinetics.