Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

STATISIK LV Nr.: 0021 WS 2005/06 25. Oktober 2005.

Ähnliche Präsentationen


Präsentation zum Thema: "STATISIK LV Nr.: 0021 WS 2005/06 25. Oktober 2005."—  Präsentation transkript:

1 STATISIK LV Nr.: 0021 WS 2005/06 25. Oktober 2005

2 Theoretische Verteilungen
Diskrete Verteilungen Binomialverteilung Hypergeometrische Verteilung Poissonverteilung ... Stetige Verteilungen Gleichverteilung Exponentialverteilung Normalverteilung Chi-Quadrat Verteilung t-Verteilung (Studentverteilung) F-Verteilung

3 Binomialverteilung Wahrscheinlichkeiten für die Häufigkeit des Eintreffens bestimmter Ereignisse bei Bernoulli-Experimenten berechnen. Bernoulli-Experiment: Folge von Bernoulli-Versuchen. Urnenmodell mit Zurücklegen Es gibt nur 2 mögliche Ausgänge: A und Ā Wahrscheinlichkeiten für Eintreten von A (θ) und Ā (1- θ) sind konstant Versuche sind voneinander unabhängig.

4 Binomialverteilung Bsp. Bernoulli-Experiment:
fünfmaliges Werfen einer Münze, Zufallsvariable X „Anzahl der Zahlen“, Realisation x = 0, 1, 2, 3, 4, 5 Wahrscheinlichkeiten für Eintreten von A: W(X=x) = f(x) = ?

5 Binomialverteilung Wahrscheinlichkeit des Auftretens einer bestimmten Realisation x: W(X=x) = f(x) Wahrscheinlichkeitsfunktion der Binomialverteilung:

6 Binomialverteilung Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass genau 2-mal Zahl geworfen wird: W(X=2)

7 Binomialverteilung Wahrscheinlichkeit, dass die Zufallsvariable X höchstens den Wert x annimmt: Verteilungsfunktion FB(x;n,θ)

8 Binomialverteilung Bsp. Münzwurf (n=5), Wahrscheinlichkeit dass höchstens 2-mal Zahl geworfen wird: W(X  2)

9 Binomialverteilung Erwartungswert der Binomialverteilung: E(X) = n·θ
Varianz der Binomialverteilung: Var(X) = n·θ·(1-θ) Bsp. Münzwurf: E(X) = 5·0,5 = 2,5 Var(X) = 5·0,5·(1-0,5) = 1,25

10 Hypergeometrische Verteilung
Urnenmodell Ziehen ohne Zurücklegen: Urne mit N Kugeln (M schwarze, N-M weiße) Zufallsstichprobe: ziehe n Kugeln ohne Zurücklegen Wahrscheinlichkeit, dass unter den n gezogenen Kugeln genau x schwarze zu finden sind? Ziehen ohne Zurücklegen, keine Berücksichtigung der Reihenfolge.

11 Hypergeometrische Verteilung
Urnenmodell: Aus M schwarzen Kugeln genau x auswählen: Anzahl der Kombinationen Aus N-M weißen Kugeln genau n-x auswählen: Anzahl der Kombinationen Jede mögl. Stpr. „x schwarze aus M“ kann mit jeder mögl. Stpr. „n-x weiße aus N-M“ kombiniert werden. Daher: Gesamtzahl der Möglichkeiten genau x schwarze zu ziehen: Gesamtzahl der Möglichkeiten aus N Kugeln n zu ziehen:

12 Hypergeometrische Verteilung
Wahrscheinlichkeit genau x schwarz Kugeln zu ziehen: Wahrscheinlichkeitsfunktion der Hypergeometrischen Verteilung:

13 Hypergeometrische Verteilung
Verteilungsfunktion: Summation der Einzelwahrscheinlichkeiten Liefert Wahrscheinlichkeit für „höchstens x schwarze Kugeln“

14 Hypergeometrische Verteilung
Bsp. Sortiment von N=8 Dioden, es werden n=3 zufällig gezogen (ohne Zurücklegen), M=5 der Dioden sind defekt. Ges: Wahrscheinlichkeit, dass genau 2 (=x) der 3 gezogenen Dioden defekt sind.

15 Hypergeometrische Verteilung
Erwartungswert: E(X) = n · M/N Varianz Var(X) = n · M/N · (N-M)/N · (N-n)/(n-1) Approximation durch Binomialverteilung: Wenn N, M, N-M groß und n klein, Parameter der Binomialverteilung: θ = M/N Faustregel: Approximation, wenn n/N < 0,05

16 Poissonverteilung Verteilung seltener Ereignisse
Große Zahl von Versuchen n, Wahrscheinlichkeit θ für Auftreten eines Ereignisses sehr klein Wahrscheinlichkeitsfunktion:

17 Poissonverteilung Erwartungswert: E(X) = μ Varianz: Var(X) = μ
Approximation der Binomialverteilung durch die Poissonverteilung: n groß und θ klein, Parameter μ = n·θ Faustregel: n > 10 und θ < 0,05. Approximation der Hypergeometrischen Vt. M/N = θ klein, N im Vergleich zu n groß, Parameter μ = n · M/N Faustregel: M/N < 0,05 und n/N < 0,05

18 Poissonverteilung Bsp. Wahrscheinlichkeit bei einer Prüfung von n=2000 Buchungen genau 3 (=x) Fehlbuchungen zu finden, Anteil der Fehlbuchungen: θ=0,001. Poissonverteilung: μ = n·θ = 2

19 Gleichverteilung Diskrete Zufallsvariable:
Jede der k möglichen Ausprägungen hat gleiche Wahrscheinlichkeit P(X=xi) = 1/k (i=1,…,k) Bsp. Wahrscheinlichkeitsverteilung der Augenzahl eines idealen Würfels: P(X=xi) = 1/6 (i=1,…,6)

20 Gleichverteilung Stetige Zufallsvariable:
Realisationen der stetigen Zufallsvariablen X liegen im Intervall [a;b] Dichtefunktion: P(x  X  x+Δx) = 1/(b-a) · Δx

21 Gleichverteilung

22 Gleichverteilung Verteilungsfunktion (Integration der Dichte)

23 Gleichverteilung

24 Gleichverteilung Erwartungswert: E(X) = (a+b)/2
Varianz: Var(X) = (b-a)² / 12 Bsp. Wegzeit ist gleichverteilt im Intervall [30;40]. Ges. Wahrscheinlichkeit zw. 32 und 35 Min. zu benötigen. P(32  X  35) = 1/(b-a) · Δx = 1/(40-30) · (35-32) = 0,3 Durchschnittlich benötigte Zeit: E(X) = 35

25 Normalverteilung Wichtigste theoretische Verteilung: Normalverteilung:
stetige Verteilung symmetrische Dichtefunktion S-förmige Verteilungsfunktion Erwartungswert: E(X) = µ Varianz: Var(X) = σ² Maximum der Dichte bei x=µ Wendepunkte bei x=µσ

26 Normalverteilungen Normalverteilung:
Dichtefunktion (für -∞<x<+∞ und σ>0) : Verteilungsfunktion:

27 Normalverteilung Normalverteilungen mit unterschiedlichen Parametern

28 Normalverteilung Verteilungsfunktion

29 Normalverteilung Standardnormalverteilung: Dichtefunktion:
Erwartungswert µ = 0 Varianz σ² = 1 Dichtefunktion:

30 Normalverteilung Standardnormalverteilung

31 Normalverteilung Approximation durch Normalverteilung: Mit wachsendem n nähern sich viele theoretische Vt. der Normalverteilung Empirische Verteilungen lassen sich ebenfalls oft durch die N-Vt. annähern.

32 Normalverteilung Reproduktionseigenschaft (od. Additivitäts- eigenschaft) der Normal-Vt. Additionstheorem der Normalverteilung: Die Summe (X) von n unabhängig normalverteilten Zufallvariablen X1,…,Xn ist ebenfalls normalverteilt. X = X1 + … + Xn Der Erwartungswert von X ist die Summe der einzelnen Erwartungswerte μ1,…,μn E(X) = μ = μ1 + … + μn Die Varianz von X ist die Summe der einzelnen Varianzen σ1²,…σn² Var(X) = σ² = σ1² + … + σn²

33 Stichproben Arithmetische Mittel der Stichprobe:
Varianz der Stichprobe: Anteilswert P einer Stichprobe:

34 Stichprobenverteilung
Verteilung des arithmetischen Mittels der Stichprobe (Zufallsstichprobe): Zufallsvariable X1,…,Xn Konkrete Realisation: x1,…,xn Arithmetische Mittel: Arithm. Mittel von ZV ist wieder eine ZV (Funktion von n ZV)

35 Stichprobenverteilung
Erwartungswert der Verteilung des arithmetischen Mittels: Varianz der Verteilung des arithm. Mittels Standardabweichung od. Standardfehler

36 Stichprobenverteilung
Erwartungswert u. Varianz bekannt Verteilung des arithm. Mittels? Annahme: Grundgesamtheit ist N(μ,σ²)-vt. Reproduktionseigenschaft der N-Vt: Summe von n unabhängig normal-vt. ZV ist wieder n-vt Daher ist auch das arithm. Mittel normalverteilt

37 Grenzwertsätze Verhalten des Mittelwert von n unabhängig identisch verteilten (i.i.d.) ZV X1,…,Xn, wenn n laufend erhöht wird (n→∞) Gesetz der Großen Zahlen Satz von Glivenko-Cantelli Zentraler Grenzwertsatz

38 Grenzwertsätze Gesetz der Großen Zahlen:
Beinhaltet die Aussage, dass sich der Mittelwert mit wachsendem n immer mehr um den gemeinsamen Erwartungswert µ der Xi konzentriert.

39 Grenzwertsätze Gesetz der Großen Zahlen:
Beinhaltet die Aussage, dass der Wert der empirischen Verteilungsfunktion an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X konvergiert.

40 Grenzwertsätze Satz von Glivenko-Cantelli:
Wert der empirischen Verteilungsfunktion konvergiert an der Stelle t mit wachsendem n gegen den entsprechenden Wert der Verteilungsfunktion von X.

41 Grenzwertsätze Zentraler Grenzwertsatz:
Aussage über die Form der Verteilung des Mittelwertes (standardisierte ZV Zn) Die Verteilungsfunktion von Zn konvergiert gegen die Standardnormalverteilung (Φ … Vt-Fkt. der N(0,1) Vt.)

42 Grenzwertsätze Aus dem Zentralen Grenzwertsatz folgt: Die Verteilung des arithm. Mittels von n unabhängig identisch verteilten Zufallsvariablen Xi (X1,…,Xn) strebt mit wachsendem Stichprobenumfang n gegen eine Normalverteilung mit dem Erwartungswert µ und Varianz σ²/n. Gleichbedeutend: Das arithmetische Mittel ist „asymptotisch normalverteilt“. Faustregel: n > 30, N-Vt. ist gute Näherung für die Vt. des arithmetischen Mittels der Stichprobe.

43 Stichprobenverteilung
Verteilung der Varianz S² der Stichprobe: Annahme: Grundgesamtheit ist N(µ,σ²)-vt. Xi sind n unabhängige normal-vt. ZV mit E(Xi)=µ und Var(Xi)= σ² (i=1,…,n) Stichprobenvarianz S² ist eine Funktion von n ZV Xi und somit wieder eine ZV.

44 Stichprobenverteilung
Verteilung der Varianz S² der Stichprobe: Chi-Quadrat Verteilung mit v=n-1 Freiheitsgraden, χ²n-1 Es gilt: Ist Z² = Xi² + … + Xn² (Summe von n quadrierten unabhängigen N(0,1)-verteilten ZV Xi), dann folgt Z² einer Chi-Quadrat Verteilung mit v Freiheitsgraden. Anzahl der unabhängigen ZV, die Z² bilden, nennt man Anzahl der Freiheitsgrade.

45 Stichprobenverteilung
χ²v Verteilung: Erwartungswert: E(Z²)=v Varianz: Var(Z²)=2v Mit wachsendem v nähert sich die χ²v Vt. einer N-Vt. mit Parametern µ=v und σ²=2v.

46 Stichprobenverteilung
Anteilswert P einer Stichprobe (P=X/n) 2 Modelle: Ziehen mit Zurücklegen Ziehen ohne Zurücklegen Bsp. Urne, N Kugeln, M schwarz, (N-M) weiße, ziehe n Kugeln (mit bzw. ohne Zurücklegen der gezogenen Kugeln), θ ist die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel.

47 Stichprobenverteilung
Ziehen mit Zurücklegen Exakte Verteilung: Binomialverteilung Wahrscheinlichkeitsfunktion der ZV X: Erwartungswert: E(X) = nθ Varianz: Var(X) = nθ(1- θ)

48 Stichprobenverteilung
Ziehen mit Zurücklegen Erwartungswert des Stichprobenanteilswertes P: E(P) = 1/n E(x) = θ Varianz des Stichprobenanteilswertes P: Var(P) = 1/n² Var(X) = θ(1- θ) / n Standardfehler des Anteilswertes:

49 Stichprobenverteilung
Approximation durch Normalverteilung (Faustregel: nθ(1- θ) ≥ 9) Erwartungswert: E(P) = µ = nθ Varianz: Var(P) = σP² = nθ(1- θ)

50 Stichprobenverteilung
Ziehen ohne Zurücklegen Exakte Verteilung: Hypergeometrische Vt. Wahrscheinlichkeitsfunktion der ZV X: Erwartungswert: E(X) = n M/N Varianz: Var(X) = nθ(1- θ) · (N-n)/(N-1)

51 Stichprobenverteilung
Ziehen ohne Zurücklegen: Erwartungswert des Stichprobenanteilswertes: E(P) = 1/n E(X) = θ Varianz des Stichprobenanteilswertes: Var(P) = 1/n² Var(X) = θ(1- θ)/n · (N-n)/(N-1) Standardfehler des Anteilswertes: Endlichkeitskorrektur = 1 setzen, wenn n bzgl. N sehr klein ist (Faustregel: n/N < 0,05)

52 Stichprobenverteilung
Approximation durch Normalverteilung µ = E(P) = θ σ² = Var(P) = θ(1- θ)/n · (N-n)/(N-1)

53 Stichprobenverteilung
Die Stichprobenverteilungen des arithmetischen Mittels, der Varianz und des Anteilswertes können also durch die Normalverteilung approximiert werden.

54 Stichprobenverteilung
Differenz zweier arithmetischer Mittel: Annahmen: 2 unabhängige Stichproben Beide Grundgesamtheiten sind annähernd N-vt Stichprobenverteilung der Differenz: N-Vt Erwartungswert: Varianz:

55 Stichprobenverteilung
Differenz zweier Anteilswerte: Annahmen: 2 unabhängige Stichproben P1, P2 annähernd n-vt. und N1, N2 so groß, dass Endlichkeitskorrektur vernachlässigbar ist. Stichprobenverteilung: N-Vt Erwartungswert: Varianz:

56 Stichprobenverteilung
Quotient zweier Varianzen: Annahmen: 2 unabhängige Stichproben (n1, n2) σ1² und σ2² aus n-vt Grundgesamtheiten Quotient:

57 Stichprobenverteilung
Stichprobenverteilung: F-Verteilung mit v1 und v2 Freiheitsgraden, Fv1,v2. Für v2 > 2 gilt: Erwartungswert: E(F) = v2 / (v2-2) Varianz:


Herunterladen ppt "STATISIK LV Nr.: 0021 WS 2005/06 25. Oktober 2005."

Ähnliche Präsentationen


Google-Anzeigen