Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Verschränkung Herstellung verschränkter Zustände EPR Paradoxon Bell Ungleichung.

Ähnliche Präsentationen


Präsentation zum Thema: "Verschränkung Herstellung verschränkter Zustände EPR Paradoxon Bell Ungleichung."—  Präsentation transkript:

1 Verschränkung Herstellung verschränkter Zustände EPR Paradoxon Bell Ungleichung

2 Herstellung verschränkter Zustände

3 .

4 Bell, EPR Versuchsaufbau

5 Hidden variables Idee: Messergebnis für alle Messungen im Vorhinein bestimmt (nicht nur spin up, down)

6 EPR Paradoxon (Versuch die QM aufs Glatteis zu führen) Annahme: Messungen sind nicht vorherbestimmt (keine hidden variables) EPR Photonenpaar erzeugen Photonen des EPR Zustands sehr weit voneinander entfernen Photonpolarisation in Richtung α messen Messergebnis für zweite Photonpolarisation in Richtung α bestimmt=> Messergebnis des zweiten Photons Gegenstand der Realität=> Es musste mit Überlichtgeschwindigkeit Gegenstand der Realität werden Wenn ich das nicht will: Messung war immer schon vorherbestimmt!

7 Das EPR Paradoxon ermöglicht es nicht Informationen mit Überlichtgeschwindigkeit zu übertragen!!

8 Bell, EPR Versuchsaufbau

9 Bell Ungleichungen Kann ich eine lokale, deterministische Theorie konstruieren? Ja! Kann ich eine lokale, deterministische Theorie konstruieren, welche die Natur beschreibt? Nein!, denn die Natur erfüllt die Bell Ungleichungen nicht!

10 Bell Ungleichung Vorgangsweise Wir nehmen an die Theorie wäre lokal und deterministisch Folgern die Bell Ungleichungen Sehen, dass die Quantenmechanik die Bell Ungleichung nicht erfüllt

11 Messung von Polarisationsrichtungen Θ= Winkel zwischen Polarisation und Polarisationsfilter Wahrscheinlichkeit, dass Licht durchgelassen wird: p(θ)=cos 2 (θ) Hier ist θ =30°

12 Messung von Polarisationsrichtungen Wahrscheinlichkeit, dass beide durchgelassen werden: p(α, β) = ½ cos 2 (α - β) Wahrscheinlichkeit, dass erster durchgeht, zweiter nicht: p(α,¬β) = ½(1- cos 2 (α - β))= ½ sin 2 (α - β)

13 Anzahl an Ereignissen n= Anzahl an gemessenen EPR Paaren Anzahl an Ereignissen, wo erste+ zweite Polarisationsrichtung durchgeht: n(α, β) = n p(α, β)= n/2 cos 2 (α - β) Anzahl an Ereignissen,wo erster durchgeht, zweiter nicht: n(α,¬β) = n p(α,¬β) = n/2 sin 2 (α - β)

14 Die Bell Ungleichung (w,a,f= Messung nach Winkelrichtung w,a,f)

15 Bell Ungleichung in der Quantenmechanik verletzt! n(α, β) - n(α, γ) –n(β, γ)>0 möglich?

16

17 Trotzdem Hidden Variables? Kann ich eine nichtlokale, deterministische Theorie konstruieren, welche die Natur beschreibt? Ja! De-Broglie-Bohm-Theorie


Herunterladen ppt "Verschränkung Herstellung verschränkter Zustände EPR Paradoxon Bell Ungleichung."

Ähnliche Präsentationen


Google-Anzeigen