Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Wasserwirtschaftliche Planungsmethoden - Übungen Wintersemester 2007/2008 Vorl.Nr.: 816.306 (2h) für 431, 432 bzw. 816.328 (1h) für 419 Magisterstudium:

Ähnliche Präsentationen


Präsentation zum Thema: "Wasserwirtschaftliche Planungsmethoden - Übungen Wintersemester 2007/2008 Vorl.Nr.: 816.306 (2h) für 431, 432 bzw. 816.328 (1h) für 419 Magisterstudium:"—  Präsentation transkript:

1 Wasserwirtschaftliche Planungsmethoden - Übungen Wintersemester 2007/2008 Vorl.Nr.: (2h) für 431, 432 bzw (1h) für 419 Magisterstudium: Modul Hydrologie u. ww. Planung (UE 2h) Diplomstudium: Gebundenes Wahlfach (UE 1h) der Wahlfachblöcke B (Energiewasserwirtschaft) und C (Gewässerplanung / Flußbau) Lehrveranstaltungsleiter: ao.Univ.-Prof. Dipl.Ing. Dr. Hubert Holzmann Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau Universität für Bodenkultur Wien

2 2 Organisation Ziel der Übungen Im Rahmen der Übungen zu Wasserwirtschaftliche Planungsmethoden werden Sie grundlegende Methoden zur Entscheidungsfindung bei wasserwirtschaftlichen Projektsalternativen sowie zu deren Optimierung kennenlernen. Die Methoden werden in 4 bis 5 Übungseinheiten vorgestellt, parallel sind 4 Übungsbeispiele aus folgenden Kapiteln zu lösen: 1. Lineare Optimierung ( ) 2. Nutzen/Kostenanalyse ( ) 3. Zeitreihenanalyse ( ) 4. Hochwasserschadensberechnung ( ) 5. Fragestunde (optional ) Test 1 ( ) Test 2 (15. oder ) Ort und Zeit HS XXII (2. Stock) Di, 14:00h s.t. - 16:00h

3 3 Organisation Beurteilung Für einen positiven Abschluss der Übungen ist die korrekte Ausführung der Übungsbeispiele und eine positive Beurteilung des schriftlichen Abschlusstests erforderlich. Ausführung der Übungsprogramme Die Beispiele sind so auszuführen, dass der Lösungsweg nachvollziehbar ist. Die Anwendung von Computern ist gestattet, die Rechengänge müssen jedoch nachvollziehbar dokumentiert werden. Die ausgearbeiteten Übungsbeispiele sind beim Abschlusstest, spätestens bis in einer roten Flügelmappe abzugeben, welche mit Namen, Kenn- und Matrikelnummer sowie der Bezeichnung der Lehrveranstaltung (LV-Nr.) beschriftet sein muss. Eventuelle Verbesserungen sind bis durchzuführen.

4 4 Organisation Betreuung der Übungen Hubert HOLZMANN Sprechstunde für Fragen zum Übungsablauf und zur Klärung von inhaltlichen Unklarheiten: Di. 16: :00, Do. 10: :00 Uhr, Sekretariatssprechstunden:Mo. - Fr. 9: :30 h, Mi – 14:30h Anmeldung:Anmeldung über BLIS (Gruppenanmeldung A)

5 5

6

7 7 Nr.Matr.Nr.VornameFamilienname Neue Anmeldungen:

8 8 Verfügbarkeit der Beispieldateien Sämtliche Dateien wie Übungsangaben, Excel Dateien und Power Point Präsentationen sind über das Web online verfügbar. Dazu ist wie folgt vorzugehen: Aktivierung Ihres Internet Browsers (Netscape oder Internet Explorer) Wahl der Adresse Es erscheint ein Fenster wie in Abbildung 1. Im Unterverzeichnis daten/lineare_optimierung sind die Programmbeispiele zur Linearen Optimierung angeführt. In der Datei angabopt.zip befinden sich die Angaben zur Linearen Optimierung. Durch Doppelklick wird das Komprimierungsprogramm WinZip aktiviert (Abbildung 2). Durch Anklicken der Datei mit der entsprechenden Anmeldungsnummer kann die Angabe als Word-Datei geöffnet und kopiert werden (Option View). Abb. 2 Abb. 1

9 9 Beispiele Kulturtechnischer Planungen Wasserbau, Flussbau, Wasserwirtschaft Hochwasserschutz, Rückbaumaßnahmen, Wasserkraft, Grundwassermodellierung, Abflusshydrologie Siedlungswasserbau Kanalisation, Abwasserbehandlung, Trinkwasserversorgung Landeskultureller Wasserbau Bewässerung, Entwässerung, Erosion Abfallwirtschaft Deponien, Verbrennungsanlagen, Entsorgungslogistik Straßenbau u. Verkehrsplanung Straßen- und Wegebau, Verkehrskonzepte Raumplanung Ländliche Raumplanungskonzepte, Flächenwidmung Konstruktiver Ingenieurbau Brückenbau, Hochbau, Tiefbau

10 10 PLANUNGSGRUNDSÄTZE (1) Veranlassung zu kulturtechnischen Maßnahmen: Vermeidung (Verringerung) von Gefahren (Schäden) Verbesserung von infrastrukturellen Maßnahmen (2) Variantenerstellung zur Lösung des Problems: Einbeziehung modellhafter Ansätze (3) Auswahl der besten Lösung Berücksichtigung der Zielerfüllungsgrade (z.B. Maximierung der Wirkung, Minimierung der Kosten)

11 11 BEISPIEL HOCHWASSERSCHUTZ Maßnahmen: Änderung der Abflußhäufigkeit (z.B. Retentionsbecken) Lineare Schutzmaßnahmen (Uferschutzdämme) Passiver Hochwasserschutz (z.B. extensive Landwirtschaft) Planerische Grundlagen: Bemessungsabfluss HQ100 oder HQ30 (z.B. nach Gumbel) Schadensfunktion S=f(HQ) Ausbaukosten A=f(QA) Ziel: Ermittlung des optimalen Ausbaudurchflusses

12 12 Methodik Systemanalyse: Wirkungszusammenhänge zwischen wasserwirtschaftlichen Eingangsgrößen und Maßnahmen werden analysiert. Bemessungsgrößen sind zu analysieren z.B. HQ100, N15, Müllanfall, Verkehrsaufkommen, etc. Ausblick und Berücksichtigung zukünftiger Entwicklungen. Wirksamkeit der Maßnahmen muss für längere Zeit gewährleistet sein ! Wirksamkeit der Maßnahmen ist zu prüfen (Modellanalyse)

13 13 Arten von Modellen: Physikalische ModelleMathematische Modelle hydraulischer ModellversuchGrundwassermodelle AnalogmodelleNiederschl.-Abflußmodelle Bodenwasserhaushaltsmodelle Modell: Vereinfachte Nachbildung eines Systems. Mit Hilfe eines Modells können (Teil)prozesse der Wirklichkeit wiedergegeben werden. Mit Hilfe von Modellen können unterschiedliche Rahmenbedingungen und Szenarien durchgespielt und die Reaktion des Systems abgeschätzt werden. System: Ausschnitt aus einem Bereich der realen (Um)welt. Es weist mitunter Schnittstellen zu Subsystemen auf, die zueinander in Wirkungsbeziehung stehen. Begriffsbestimmung

14 14 Methodik der Systemanalyse Abgrenzung des Systems. Für bestimmte Fragestellungen interessieren oft nur Teilaspekte innerhalb eines Gesamtsystems. (Mathematische) Formulierung der Systemabläufe und Gesetzmäßigkeiten. Erfassung der prozessrelevanten Systemparameter. Nachbildung des realen Systems in einem (physikalischen oder mathematischen) Modell. (Realproblem -> Formalproblem) Prüfung und Anpassung des Modells anhand Naturdaten (Modellkalibrierung). Simulation von Systemabläufen mittels Modell bei unterschiedlichen Szenarien (Systemanalyse) Optimierung der Maßnahmen aufgrund der Systemanalyse

15 15 Operation Research - Planungsrechnung

16 16 Internet-Adressen zu Operation Research Open Directory - Science: Math: Operations Research: Mathematik für Ökonomen von Josef LEIDOLD Methods of Optimization: Michael Trick's Operations Research Page: Courses: Optimization Online Mathe-Kiste von Hubert MASSIN

17 17 Literatur zu Operations Research

18 18 Lineare Optimierung: Produktionsoptimierung )

19 19 Lineare Optimierung Die lineare Optimierung ist ein Spezialfall der mathematischen Optimierung. Sie zeichnet sich dadurch aus, dass sowohl die Zielfunktion als auch die Nebenbedingungen durch lineare mathematische Beziehungen ausgedrückt werden können.

20 20 Wasserlieferung an einen Industriebetrieb GrundwasserSeewasser Reservoir Industrie X1 0 X X2 0 X X1 + X Erlös: Grundwasser: 5 GE/m 3 Seewasser: 3 GE/m 3 Mischverhältnis: X1 / X2 0.5 Zielfunktion: 5 X1 + 3 X2 = MAX! Ein Wasserversorgungunternehmen stellt für einen Großverbraucher Wasser zur Verfügung. Es stammt aus Grundwasser- und Seewasservorkommen. Die Leitungskapazitäten sind begrenzt. Weiters muss ein Mischungsverhältnis zwischen See- und Grundwasser von zumindest 2:1 bestehen. Die Bereitstellung ist hinsichtlich des Erlöses zu optimieren.

21 21 Restriktionen X1 0 X2 0 X X X1+X X1 0.5 X2 Zielfunktion 5 X1 + 3 X2 = MAX Z = 0 Z = Z = Z = Optimum X1 = X2 = Z = 5 · · = Übungsbeispiel Lineare Optimierung X2 (Tsd. m 3 /d) X1 (Tsd. m 3 /d)

22 22 Anwendungseinschränkungen der Linearen Optimierung Unbegrenzte Lösungen Entartete Restriktionen Nichtkonvexer Lösungsraum Mehrdimensionales Problem (>2 für graphisches Lösungsverfahren) Nichtlineare Restriktionen oder Zielfunktionen

23 23 1. Programmbeispiel Angabe Zur Verbesserung der landwirtschaftlichen Produktionsbedingungen soll ein Bewässerungsprojekt erstellt werden. Die Wasserentnahme erfolgt aus einem Stausee, dessen Wasserspiegellage 150 m über Meereshöhe liegt. Die maximale Entnahmemenge aus dem Stausee beträgt Q m3/s. Das Projekt sieht vor, daß zwei Gebiete versorgt werden sollen. Das Gebiet I liegt h1 m über dem Meer. Bis zu einer Wassermenge von q1 m3/s läßt sich dort eine Ertragssteigerung von a1 Geldeinheiten (GE) pro Jahr und m3/s erzielen. Darüber hinaus ist eine Ertragssteigerung nicht möglich. Die entsprechenden Kennwerte für das Gebiet II sind h2, q2 und a2. Die Wasserversorgung erfolgt mittels Pumpen, deren Energiebedarf nach folgender Gleichung abgeschätzt werden kann: N = 10. H. Q ; H in [m], Q in [m3/s] und N in [KW] Insgesamt kann eine maximale Leistungsaufnahme von L [kW] installiert werden.

24 24 1. Programmbeispiel Aufgabenstellung Das Bewässerungsprojekt soll so erstellt werden, daß sich eine maximale Ertragssteigerung ergibt. Folgende Kenngrößen sind graphisch zu bestimmen: 1. Die Wassermengen, mit denen die Gebiete I und II versorgt werden sollen. 2. Die elektrische Leistung, die dafür aufzuwenden ist. 3. Die Ertragssteigerung, die in den beiden Gebieten erzielt wird, sowie der gesamte Mehrertrag. Zahlenangaben (personenspezifisch) Q = 10.3 m3/sq1 = 7.5 m3/sq2 = 11.9 m3/s L = 51.3 MWh1 = 595 mh2 = 375 m a1 = 2.8 GE/m3/s a2 = 2.6 GE/m3/s

25 25 1. Programmbeispiel Definition der Zielgröße und der Strukturvariablen Ist - wie im vorliegenden Übungsbeispiel - die Ertragssteigerung, die durch die Bewässerung von zwei Gebieten zu erzielen ist, zu maximieren, so stellt diese Ertragssteigerung die Zielgröße G dar. Der Mehrertrag ist abhängig von den Wassermengen, mit denen die beiden Gebiete versorgt werden. Diese Wassermengen (X 1 und X 2 ) werden als Strukturvariable bezeichnet. Ihre Anzahl ergibt die Dimension der Optimierung. Definition der Zielfunktion und der Restriktion Die Zielfunktion beschreibt die Abhängigkeit der Zielgrößen von den Strukturvariablen. Im Falle des Übungsbeispieles ergibt sich der Mehrertrag proportional zu den Wassermengen X 1 und X 2. Mit Hilfe folgender Ungleichungen werden die Restriktionen formuliert: Zielfunktion:G = a 1. X 1 + a 2. X 2 Restriktionen: X 1 + X 2 < Q Die für die Bewässerung vorgesehenen Wassermengen X 1 und X 2 dürfen die maximale Entnahmemenge (Q) nicht überschreiten. 10. H 1. X H 2. X 2 < L Die von den Pumpen benötigte Energiemenge darf die zur Verfügung stehende maximal installierte Leistung (L) nicht überschreiten. X 1 < q 1 und X 2 < q 2 Eine Versorgung der Gebiete 1 und 2 über die Mengen (q 1 und q 2 ) hinaus ergibt keine Ertragssteigerung mehr. Neben diesen (Un-) Gleichungen gelten für alle Variablen mit Ausnahme der Zielgröße die Nichtnegativitätsbedingung.

26 26 Nichtlineare Optimierung Diskrete Enumeration X1 X2

27 27 Nichtlineare Optimierung Methode der schrittweisen Verbesserung X1 X2

28 28 Nichtlineare Optimierung Gradientenverfahren X1 X2


Herunterladen ppt "Wasserwirtschaftliche Planungsmethoden - Übungen Wintersemester 2007/2008 Vorl.Nr.: 816.306 (2h) für 431, 432 bzw. 816.328 (1h) für 419 Magisterstudium:"

Ähnliche Präsentationen


Google-Anzeigen