Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

In der Mathematik gibt es eine Vielzahl von Möglichkeiten, mit Hilfe derer man Messwerte (z. B. bei einem Test erzielte Punktzahlen) zu analysieren, zu.

Ähnliche Präsentationen


Präsentation zum Thema: "In der Mathematik gibt es eine Vielzahl von Möglichkeiten, mit Hilfe derer man Messwerte (z. B. bei einem Test erzielte Punktzahlen) zu analysieren, zu."—  Präsentation transkript:

1 In der Mathematik gibt es eine Vielzahl von Möglichkeiten, mit Hilfe derer man Messwerte (z. B. bei einem Test erzielte Punktzahlen) zu analysieren, zu beurteilen und für die weitere Verarbeitung (z. B. Zuweisung von Noten) aufzubereiten versucht. Arithmetisches Mittel und Median Mittelwert (arithmetisches Mittel) Median Modus Varianz Standardabweichung Quartile Einen Teil davon können Sie (vorerst) vergessen mit anderen jedoch müssen Sie sich auseinandersetzen. harmonisches Mittel geometrisches Mittel...

2 Ein Beispiel: 7Probanden haben bei einem Test folgende Punktzahlen erzielt... Arithmetisches Mittel und Median Der Mittelwert (das arithmetische Mittel) ist Um den Median zu ermitteln, sortieren Sie die Messergebnisse der Größe nach, also Der Median ist das Punktergebnis des in der sortierten Verteilung in der Mitte liegenden Probanden, also gleich 18. Die Hälfte der Werte liegt darunter und die Hälfte darüber (bei einer geraden Zahl von Probanden nimmt man die beiden um die Mitte liegenden Messergebnisse und bildet den Mittelwert daraus). Ändert man in der obigen Verteilung einen Zahlenwert, z. B. statt 10 nur 3 Punkte, dann ändert sich der Mittelwert in ca. 19,3; der Median bleibt aber derselbe.

3 Der Mittelwert einer Punkte- oder Notenverteilung wird in der schulischen Praxis überbewertet und auch oft missbraucht. Testen Sie selbst: Eine Klassenarbeit habe den Notenschnitt 3,25; was können Sie aufgrund dieser Information über die KA aussagen? Das arithmetische Mittel (Mittelwert) Ein kleines (in der Literatur oft zu findendes) Beispiel: In einer Firma verdienen 8 Mitarbeiter je und der Chef im Monat. Der Mittelwert ist ; was glauben Sie werden die Mitarbeiter sagen, wenn sie hören, in ihrer Firma werde im Schnitt pro Monat verdient? Der Median ist Bei dieser Verteilung wäre er sehr viel besser als der Mittelwert geeignet, den tatsächlichen Sachverhalt treffend zu beschreiben. Aber es gibt noch weitere eklatante Dilemmata: Diese beiden völlig unterschiedlichen Notenverteilungen haben denselben Durchschnitt von 3,42. Um die Notenverteilung oder auch Rohpunkteverteilungen beurteilen zu können, benötigen Sie sogenannte Streuungsmaße wie die Standardabweichung.

4 Sie erinnern sich: Gütekriterien Um Standards in der Bewertung von Schülerleistungen sicherzustellen, bedarf es der Beachtung der Gütekriterien... Aufgabenanalyse Schwierigkeitsgrades Trennschärfe Des Weiteren gilt es, die verwendeten Aufgabenapparate einer genaueren Betrachtung zu unterziehen, und zwar hinsichtlich des Schwierigkeitsgrades und der Trennschärfe.

5 Zu leichte oder zu schwere Aufgaben tragen zu wenig oder nichts dazu bei, ein vorhandenes Leistungsgefälle (Ranking) abzubilden. Anerkannter Standard ist: Aufgaben sollen von mindestens 20% und von höchstens 80% der Schülerinnen und Schüler bewältigt werden. Es ist eine simple Logik, dass eine Aufgabe von den guten Schülerinnen und Schülern besser gelöst werden muss als von den schlechten. Trifft das nicht zu, dann ist der Wurm drin. Das Problem ist nicht so sehr das Auszählen, wie viele Schülerinnen und Schüler der Untergruppe und der Obergruppe die Aufgabe gelöst haben, sondern die Zuordnung zu der jeweiligen Gruppe, die ja eigentlich nicht aus den zurückliegenden, sondern aus den aktuellen Leistungen erwachsen muss. Mithilfe einer Tabellenkalkulation (Excel o. Ä.) kann das aber dynamisch mit vertretbarem Aufwand aus den aktuellen Ergebnissen heraus ermittelt werden. Die Bepunktung einer Aufgabe muss mit ihrem Schwierigkeitsgrad korrelieren, wobei in erster Linie nicht die Einschätzung der Lehrkraft, sondern eben das faktische Testergebnis bestimmend sein sollte.

6 Aufgabentableau Für jeden Probanden...Für jeden Probanden wird zu jeder Aufgabe wird zu jeder Aufgabe die erreichte Punktzahl eingetragen.... die erreichte Punktzahl eingetragen.

7 Aufgabentableau Daraus wird die jeweilige Punktsumme errechnet..... und die Lösungsquote. Es wird der Median der Punktsummen berechnet und damit jeder Proband der Ober- oder Untergruppe zugeordnet. Im Zuge der Eintragungen wird dies ständig aktualisiert.... und damit jeder Proband der Ober- oder Untergruppe zugeordnet. Im Zuge der Eintragungen wird dies ständig aktualisiert.

8 Aufgabentableau Zur Erläuterung: Um die Trennschärfe bei allen Aufgaben vergleichen zu können, wird die Punktdifferenz O U zur Punktsumme O + U in Beziehung gesetzt. Am Beispiel der Aufgabe I: (77,0 43,5)/(77,0 + 43,5) = 33,5/120,5 0,28 0,3 Das ergibt stets einen Wert kleiner oder gleich +1 und größer oder gleich 1; ist er negativ, dann war die Untergruppe besser... womit wir beim Wurm wären.... und daraus dann ein Wert zwischen 1 und +1 für die Trennschärfe. Positiv sind die Werte, wenn die Obergruppe die Aufgabe besser gelöst hat, negativ beim Gegenteil (oder Null wenn gleich gut gelöst).... und daraus dann ein Wert zwischen 1 und +1 für die Trennschärfe. Positiv sind die Werte, wenn die Obergruppe die Aufgabe besser gelöst hat, negativ beim Gegenteil (oder Null wenn gleich gut gelöst).... nach erfolgter O/U-Zuordnung werden bei jeder Aufgabe die Punktsummen der Ober- und der Untergruppe ermittelt...

9 Standardabweichung Sie erinnern sich... Mittelwerte sagen nichts aus über die Verteilung von Daten. Dafür benötigt man ein Maß für die Streuung, z. B. die Standardabweichung. Wenn Sie zu diesem Begriff googeln nicht erschrecken, es ist viel einfacher als Sie denken! SD 1,18 SD 1,47 Sie müssen das nicht von Hand ausrechnen (können), das macht eine Tabellenkalkulation für Sie ratzfatz. Aber Sie müssen verstehen, was dahintersteckt.

10 Standardabweichung Wir nehmen dazu die Punktsummen aus dem Aufgabentableau mit 22 Probanden: Aufsteigend sortiert sieht das so aus aber das brauchen wir nicht, jedoch können Sie damit den Median abschätzen. Richtig! Er ist ungefähr 56,8. Für den Mittelwert bemühen wir Excel: Ø 55,7

11 Standardabweichung Aber kommen wir nun zum Phänomen Abweichung. Wir berechnen für jeden Probanden seine Abweichung vom Mittelwert Ø 55,7, also Punktwert minus Mittelwert. Diese Abweichung ist positiv oder negativ, was hinderlich ist, wenn wir jetzt den Durchschnitt dieser bilden wollen. Deswegen nehmen wir dafür nur den Betrag (ohne Vorzeichen) und berechnen daraus den Mittelwert: Die Probanden weichen im Durchschnitt um 11,4 Punkte vom Mittelwert ab. Dieser Wert wäre ein mögliches Maß für die Streuung.

12 Standardabweichung Die Mathematiker machen das raffinierter: Sie quadrieren die Abweichungen (damit alle Zahlen positiv werden) und berechnen den Durchschnitt dieser Abweichungsquadrate (er beträgt 210,3) und ziehen daraus wieder die Wurzel (machen also in gewisser Weise das Quadrieren wieder rückgängig). Man erhält damit ca. 14,5.* ) Dieser Wert ist ein weiteres mögliches Maß für die Streuung. Da diese Technik Standard sein soll, nennt man sie Standardabweichung. * ) Das ist natürlich nicht exakt dasselbe wie unsere vorige Technik, weil der Mittelwert von Zahlen rechnerisch nicht dasselbe ist wie die Wurzel aus dem Mittelwert der Quadrate dieser Zahlen. Glückwunsch! Sie haben jetzt schon mehr als nur eine Ahnung von Standardabweichung. Werden Sie gefragt, was das denn sei, dann antworten Sie... Glückwunsch! Sie haben jetzt schon mehr als nur eine Ahnung von Standardabweichung. Werden Sie gefragt, was das denn sei, dann antworten Sie...

13 Standardabweichung Sie sagen... Die Standardabweichung? Ganz einfach: Das ist die Wurzel aus dem Durchschnitt der quadrierten Abweichungen vom Punktdurchschnitt! Sie sagen... Die Standardabweichung? Ganz einfach: Das ist die Wurzel aus dem Durchschnitt der quadrierten Abweichungen vom Punktdurchschnitt! Ø 55,7 Ø 210,3

14 Notenzuweisung mittels Standardabweichung Zunächst ein kleiner Exkurs zur... § 53 Leistungsbeurteilung (1) Leistungen werden nach dem Grad des Erreichens von Lernanforderungen beurteilt. Die Beurteilung berücksichtigt den individuellen Lernfortschritt der Schülerinnen und Schüler, ihre Leistungsbereitschaft und auch die Lerngruppe, in der die Leistung erbracht wird. Somit sind in der SchO drei Normen für die Bewertung aufgetragen: die objektive Norm (am Sachanspruch gemessen) die intrasubjektive Norm (an Vorleistungen gemessen) die intersubjektive Norm (an den Leistungen der Lerngruppe gemessen) Bei Klassenarbeiten, schriftlichen Überprüfungen und schriftlichem Abfragen der Hausaufgaben bietet die Standardabweichung eine gute Möglichkeit, Punkteverteilungen in Noten zu transferieren, wobei sowohl die objektive als auch die intersubjektive Norm Beachtung finden.

15 Notenzuweisung mittels Standardabweichung Zu erreichen waren 85 Punkte. SD 14,8 Der Punktdurchschnitt ist 55,7. Die Standardabweichung ist 14,8 Punkte. Die 22 Probanden haben die Ergebnisse erzielt. Anmerkung zur Standardabweichung: Zuvor hatten wir SD 14,5 errechnet, mit gerundeten Werten. SD 14,8 ist der von Excel mit der dort verwendeten Routine und Genauigkeit ermittelte Wert.

16 Notenzuweisung mittels Standardabweichung Sie weisen dem Notendurchschnitt eine Note zu. In der Regel, weil es die mittlere Leistung ist, die mittlere, also 3,5 (intersubjektive Norm = die Lerngruppe liefert den Maßstab). SD 14,8 Hier greift aber auch die objektive Norm, der Sachanspruch. Der Punktdurchschnitt 55,7 entspricht in unserem Beispiel 65,5 % der Maximalpunktzahl, also....???... Entscheiden wir uns (vorerst) für 2,5. = 2,5

17 Notenzuweisung mittels Standardabweichung Die Standardabweichung liefert das Maß für die Länge der Notenintervalle. SD 14,8 Beachten Sie unbedingt: Die Notenspannen müssen äquidistant sein (sich aus Rundungen ergebende Unterschiede sind statthaft). Nur bei den Randnoten 1 und 6 sind Abweichungen erlaubt. = 2,5

18 Notenzuweisung mittels Standardabweichung Die Änderung der Notenzuweisung zum Punktdurchschnitt bedeutet nichts anderes als eine Verschiebung der Notenintervalle. Wenn wir das von 2,5 in 3,0 ändern... SD 14,8 = 2,5 = 3,0

19 Notenzuweisung mittels Standardabweichung Eine (in Maßen) erlaubte Operation ist auch das gleichmäßige Strecken oder Stauchen der Notenintervalle (die Äquidistanz muss erhalten bleiben). SD 14,8 Beispielsweise mit dem Faktor 0,75 (Stauchung)... (aus Gründen der Veranschaulichung wurde ein brutaler Wert genommen; normal wäre ein Faktor nahe bei 1,0). = 2,5


Herunterladen ppt "In der Mathematik gibt es eine Vielzahl von Möglichkeiten, mit Hilfe derer man Messwerte (z. B. bei einem Test erzielte Punktzahlen) zu analysieren, zu."

Ähnliche Präsentationen


Google-Anzeigen