Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Drei Handlungs-Schwerpunkte. Solaranlagen auf - 70 Prozent der Dachflächen - 70 Prozent der Fassadenflächen - 3 Prozent der Ackerflächen und Windanlagen.

Ähnliche Präsentationen


Präsentation zum Thema: "Drei Handlungs-Schwerpunkte. Solaranlagen auf - 70 Prozent der Dachflächen - 70 Prozent der Fassadenflächen - 3 Prozent der Ackerflächen und Windanlagen."—  Präsentation transkript:

1 Drei Handlungs-Schwerpunkte

2 Solaranlagen auf - 70 Prozent der Dachflächen - 70 Prozent der Fassadenflächen - 3 Prozent der Ackerflächen und Windanlagen auf - 15 Prozent der Ackerflächen - 15 Prozent der Waldflächen könnten bilanziell den Jahresbedarf an Strom, Wärme und Verkehr in Deutschland decken. Eine von tausend verschiedenen Möglichkeiten. Siehe dazu http:/www energiewenderechner.de

3 Solaranlagen auf - 70 Prozent der Dachflächen - 70 Prozent der Fassadenflächen - 3 Prozent der Ackerflächen und Windanlagen auf - 15 Prozent der Ackerflächen - 15 Prozent der Waldflächen könnten bilanziell den Jahresbedarf an Strom, Wärme und Verkehr in Deutschland decken. Wie schafft man den Ausgleich zwischen zeitweiligem Überangebot und zeitweiligem Mangel ?

4

5 Planung der Stromwirtschaft

6 Ausbau der Stromnetze minimieren durch Ausbau dezentraler Speicher Beitrag des Solarenergie-Förderverein Deutschland (SFV) Solarstrom vom Dach und aus dem Keller

7 Ausbau der Stromnetze minimieren durch Ausbau dezentraler Speicher Solarenergie-Förderverein Deutschland (SFV) Dipl.-Ing. Wolf von Fabeck Vordringliches Problem: Anschluss von Solarstromanlagen wird immer häufiger von Netzbetreibern abgelehnt. Die Niederspannungsnetze würden angeblich überlastet.

8 Wie können Solaranlagen das Stromnetz überlasten? Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent

9 Niederspannungsnetz 230 V Wie können Solaranlagen das Stromnetz überlasten? Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent

10 Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Wie können Solaranlagen das Stromnetz überlasten? Mittelspannungstransformator Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent

11 Niederspannungsnetz 230 V Mittelspannung 20.000 Volt Messpunkt Netzberechnung geht von folgendem ungünstigsten Fall aus: Kein Stromverbrauch (alle Bewohner im Sommerurlaub) Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent

12 Niederspannungsnetz 230 V Mittelspannung 20.000 Volt Messpunkt Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent Netzberechnung geht von folgendem ungünstigsten Fall aus: Kein Stromverbrauch (alle Bewohner im Sommerurlaub)

13 Niederspannungsnetz 230 V Mittelspannung 20.000 Volt Messpunkt Minimalspannung Maximalspannung Zulässige Spannung im Niederspannungsnetz 230 Volt plus minus 10 Prozent

14 Niederspannungsnetz 230 V Mittelspannung 20.000 Volt Mit dem Ansteigen der Sonne steigt die Spannung am Ende des Netzzweiges Messpunkt

15 Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Messpunkt Mit dem Ansteigen der Sonne steigt die Spannung am Ende des Netzzweiges

16 Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Mit dem Ansteigen der Sonne steigt die Spannung am Ende des Netzzweiges

17 Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Die Spannung am Ende des Netzzweiges steigt über den zulässigen Höchstwert 230 V + 10 Prozent = 253 Volt

18 Spannung am Hausanschluss in Volt Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Die Solaranlagen am Ende des Netzzweiges erhalten deshalb keine Anschlussgenehmigung

19 Mittelspannung 20.000 Volt Niederspannungsnetz 230 V Die Solaranlagen am Ende des Netzzweiges erhalten deshalb keine Anschlussgenehmigung

20 230 Volt Berechnung der Spannungsanhebung

21 230 Volt Berechnung der Spannungsanhebung

22 230 Volt Berechnung der Spannungsanhebung

23 230 Volt Berechnung der Spannungsanhebung In einem Netzzweig ohne Stromeinspeisung und ohne Stromverbrauch ist die Spannung überall gleich.

24 Berechnung der Spannungsanhebung Solarstrom I

25 Solarstrom I wird mittels Sonnenenergie durch das Niederspannungsnetz getrieben. Berechnung der Spannungsanhebung Solarstrom I

26 Zwischen den Punkten A und B hat das Netzkabel einen Widerstand R AB Berechnung der Spannungsanhebung R Solarstrom I wird mittels Sonnenenergie durch das Niederspannungsnetz getrieben. Solarstrom I

27 Zwischen den Punkten A und B hat das Netzkabel einen Widerstand R AB Berechnung der Spannungsanhebung R Solarstrom I wird mittels Sonnenenergie durch das Niederspannungsnetz getrieben. Solarstrom I Damit der Strom I durch den Widerstand R fließt, muss am Punkt B die Spannung höher sein, als am Punkt A

28 U d = R * I Spannungsdifferenz zwischen B und A (Ohmsches Gesetz) I Berechnung der Spannungsanhebung AB

29 I U A = 230 VU B = U A + R * I Punkt A : Spannung konstant 230 V AB

30 Plus 4 Volt 230 Volt234 Volt AB Zahlenbeispiel

31 Plus 8 Volt Plus 4 Volt 230 Volt238 Volt242 Volt A B Wenn zwei Solaranlagen einspeisen, fließt zwischen B und A der zweifache Strom I Deshalb verdoppelt sich dort die Spannungsanhebung auf 8 Volt C

32 Plus 12 Volt Plus 8 Volt Plus 4 Volt 230 Volt242 Volt250 Volt254 Volt Unzulässig, weil über 253 Volt (230 Volt plus 10 %) A BC D Wenn drei Solaranlagen einspeisen, fließt zwischen B und A der dreifache Strom I Deshalb verdreifacht sich dort die Spannungsanhebung auf 12 Volt

33 Plus 12 Volt Plus 8 Volt Plus 4 Volt 230 Volt242 Volt250 Volt254 Volt A BC D Regelbarer Ortstrafo vermindert Spannung in A

34 Plus 12 Volt Plus 8 Volt Plus 4 Volt 230 Volt242 Volt250 Volt254 Volt A BC D Regelbarer Ortstrafo vermindert Spannung in A 207 Volt219 Volt227 Volt231 Volt Unterste zulässige Spannung 230 V -10%

35 Plus 12 Volt Plus 8 Volt Plus 4 Volt 230 Volt242 Volt250 Volt254 Volt A BC D Regelbarer Ortstrafo vermindert Spannung in A 207 Volt219 Volt227 Volt231 Volt Unterste zulässige Spannung 230 V -10% Zwei weitere Solaranlagen können angeschlossen werden - Doch dann ist Schluss

36 Zusammenfassung Spannungsanhebung U d ergibt sich aus Leitungswiderstand R und Stromstärke I U d = I * R I

37 Spannungsanhebung U d ergibt sich aus Leitungswiderstand R und Stromstärke I U d = I * R I

38 I Wie verkleinert man die Spannungsanhebung? U d = I * R Spannungsanhebung U d ergibt sich aus Leitungswiderstand R und Stromstärke I

39 I Bisher verkleinerte man R Netzausbau U d = I * R Beides gehört zur Variante Netzausbau Oder verminderte Spannung in A A

40 230 Volt Es fließt mehr Solarstrom durch das Niederspannungsnetz. I Netzausbau Mittelspannung 20.000 Volt Bisher verkleinerte man R Beides gehört zur Variante Netzausbau Oder verminderte Spannung in A

41 230 Volt Es fließt mehr Solarstrom durch das Niederspannungsnetz in das Mittelspannungsnetz Die Mittelspannungsnetze müssen ebenfalls verstärkt werden, I Netzausbau Mittelspannung 20.000 Volt Netzausbau

42 Der Konzern Konsequenzen des Netzausbaus Sein Stromnetz Seine Erzeugungsanlagen Seine Filialen

43 Der Konzern Sein Stromnetz Seine Erzeugungsanlagen Seine abhängigen Kunden Seine Filialen Abhängigkeit von den Stromkonzernen

44 Der Konzern Hinzu kommt der Sein Stromnetz Seine Erzeugungsanlagen Seine abhängigen Kunden Seine Filialen

45 Der Konzern Sein Stromnetz Seine Erzeugungsanlagen Seine abhängigen Kunden Seine Filialen Ausbau der Fernübertragungsleitungen Hinzu kommt der

46 Der Konzern Seine Fern- übertragungs- leitungen Seine Filialen

47 Der Konzern Seine Fern- übertragungs- leitungen Offshore Windparks in Nord- u. Ostsee Seine Filialen

48 Der Konzern Seine Fern- übertragungs- leitungen Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland Seine Filialen

49 Der Konzern Seine Fern- übertragungs- leitungen Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland Desertec – Wüstenstrom aus Nordafrika Seine Filialen

50 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland Seine Filialen

51 Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland Die Technik wechselt Seine Filialen

52 Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland Die Technik wechselt Seine Filialen

53 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland bleibt Die Abhängigkeit bleibt Seine Filialen

54 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland bleibt Die Abhängigkeit bleibt Die Strukturen bleiben Seine Filialen bleiben

55 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland bleibt Die Abhängigkeit steigt Die Strukturen bleiben Seine Filialen bleiben

56 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern

57 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern Politische Unruhen verzögern das gesamte Projekt (z.B. Libyen, Ägypten)

58 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern Politische Unruhen verzögern das gesamte Projekt (z.B. Libyen, Ägypten) Abhängigkeit von den Energie-Großkonzernen nimmt zu Bürgerbeteiligung ist nicht möglich

59 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern Politische Unruhen verzögern das gesamte Projekt (z.B. Libyen, Ägypten) Abhängigkeit von den Energie-Großkonzernen nimmt zu Bürgerbeteiligung ist nicht möglich Unnötige volkswirtschaftliche Kosten für die Fernleitungen, denn sie können bei europaweitem Ausfall von Wind und Sonne keine Speicher ersetzen. Und diese könnten auch dezentral ohne Fernleitungen gebaut werden.

60 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern Politische Unruhen verzögern das gesamte Projekt (z.B. Libyen, Ägypten) Abhängigkeit von den Energie-Großkonzernen nimmt zu Bürgerbeteiligung ist nicht möglich Unnötige volkswirtschaftliche Kosten für die Fernleitungen, denn sie können bei europaweitem Ausfall von Wind und Sonne keine Speicher ersetzen. Und diese könnten auch dezentral ohne Fernleitungen gebaut werden. Im Katastrophenfall (Orkane, Erdbeben, Terroranschlag etc.) bricht das gesamte System europaweit zusammen

61 Ausbau der Netze ist nicht unsere Lösung Die Akteure haben kein Interesse an einer raschen Umstellung auf Erneuerbare Energien und können sie beliebig verzögern Politische Unruhen verzögern das gesamte Projekt (z.B. Libyen, Ägypten) Abhängigkeit von den Energie-Großkonzernen nimmt zu Bürgerbeteiligung ist nicht möglich Unnötige volkswirtschaftliche Kosten für die Fernleitungen, denn sie können bei europaweitem Ausfall von Wind und Sonne keine Speicher ersetzen. Und diese könnten auch dezentral ohne Fernleitungen gebaut werden. Im Katastrophenfall (Orkane, Erdbeben, Terroranschlag etc.) bricht das gesamte System europaweit zusammen Als Beispiel für Entwicklungsländer nicht geeignet

62 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Pumpspeicherkraftwerke in Norwegen Gaskraftwerke mit Erdgas aus Russland bleibt Seine Filialen bleiben

63 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland bleibt Seine Filialen bleiben Pumpspeicher- kraftwerke in Norwegen

64 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland bleibt Seine Filialen bleiben Pumpspeicher- kraftwerke in Norwegen in den Alpen? In den Karpathen? In den Pyrenäen In der Eifel? Im bayerischen Wald Am Vogelsberg? In der Rhön?

65 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland bleibt Seine Filialen bleiben Pumpspeicher- kraftwerke in Norwegen in den Alpen? In den Karpathen? In den Pyrenäen In der Eifel? Im bayerischen Wald Am Vogelsberg? In der Rhön? Der Platz reicht nicht

66 Der Konzern Desertec – Wüstenstrom aus Nordafrika Offshore Windparks in Nord- u. Ostsee Gaskraftwerke mit Erdgas aus Russland bleibt Seine Filialen bleiben Pumpspeicher- kraftwerke in Norwegen in den Alpen? In den Karpathen? In den Pyrenäen In der Eifel? Im bayerischen Wald Am Vogelsberg? In der Rhön? Der Platz reicht nicht Umweltverbände wehren sich

67 1 kWh speichern Größenvergleich Pumpspeicherkraftwerk und Bleibatterie Wohin mit den Stromspeichern?

68 4 Kubikmeter Wasser Im Unterbecken 100 Meter hochpumpen 2 Bleibatterien Oberbecken Pumpspeicherkraftwerk Größenvergleich Pumpspeicherkraftwerk und Bleibatterie 1 kWh speichern

69 4 Kubikmeter Wasser Im Unterbecken 100 Meter hochpumpen 2 Bleibatterien Oberbecken Pumpspeicherkraftwerk Größenvergleich Pumpspeicherkraftwerk und Bleibatterie 1 kWh speichern Bleibatterien sind hier nur als Beispiel für einen preiswerten, stationären Stromspeicher mit gutem Wirkungsgrad anzusehen

70 Zunächst einmal legen wir uns seitens des SFV nicht auf Blei-Akkus fest. Derzeit sind sie zwar die preisgünstigste Variante für stationäre Batterien. Aber es wird intensiv an verschiedenen Speichertypen geforscht und welcher dabei den Sieg davontragen wird, ist zur Zeit noch nicht abzusehen. Blei hat leider unter Umweltfreunden einen schlechten Ruf. Der rührt vornehmlich daher, dass vor wenigen Jahrzehnten Blei als Antiklopfmittel dem Benzin zugesetzt wurde und dadurch aus Millionen von Autoauspuffen in die Luft, die Landschaft und mit der Nahrung von den Feldern dann in unsere Körper verteilt wurde. Schlechte Zähne, und Probleme mit der Fortpflanzung gehören mit zu den Folgen. Blei in Akkus hingegen ist dort strikt von der Außenwelt abgeschlossen und wird zu fast 100 Prozent dem Recycling zugeführt. In technischer Hinsicht haben sich Bleiakkus schon lange bewährt. Besonders eindrucksvoll war ein riesiger Stromspeicher, den die Berliner Bewag aus Tausenden von Bleibatterien zur Zeit der Luftbrücke anlegte, um die rundum eingeschlossene Stadt Westberlin tagsüber mit Spitzenlaststrom versorgen zu können. Nachts wurden diese Batterien von den wenigen in Westberlin stehenden Kohlekraftwerken mit Strom befüllt und tags konnten die Batterien dann die Kohlekraftwerke unterstützen, die für sich alleine nicht ausgereicht hätten, den hohen Mittagsstrombedarf der Großstadt zu decken. Die Kohle für die Kohlekraftwerke wurde übrigens von englischen und amerikanischen Transportflugzeugen nach Westberlin gebracht. Für vergleichbare Großspeicher würde man heute wahrscheinlich Natrium-Schwefel-Batterien einsetzen. Sie haben nur einen Nachteil, Sie müssen auf hohen Temperaturen (300 ° C) gehalten werden. Als Antriebsbatterie für Automobile und gar für Flugzeuge sind Bleibatterien zu schwer. Dort wird man vermutlich Batterien mit Lithium verwenden, die allerdings noch erheblich teurer sind als Bleiakkus..

71 Aufladbare Batterien als Kurzzeitspeicher (Tag-Nacht-Speicher) Zur Entlastung der Niederspannungsnetze

72 Es folgt ein Diskussionsbeitrag von Wolf von Fabeck für eine vereinfachte Förderung dezentraler Speicher in fester Verbindung mit einer PV-Anlage

73 Bleibatterien oder andere wiederaufladbare Batterien mit gutem Wirkungsgrad Aufladbare Batterien als Kurzzeitspeicher (Tag-Nacht-Speicher) Zur Entlastung der Niederspannungsnetze Rückblende

74 230 Volt Solarstrom I wird mittels Sonnenenergie durch das Niederspannungsnetz mit dem Widerstand R getrieben. Dazu gehört eine treibende Spannungsdifferenz U d U d = I * R (Ohmsches Gesetz) I Bisher verkleinerte man den Widerstand R durch Netzausbau U d = I * R

75 230 Volt I Wir verkleinern I indem wir die Solarleistung auf den Abend und die folgende Nacht verteilen. U d = I * R Unsere Alternative: Speicherbau

76 In den Mittagsstunden ist der Solarstrom besonders hoch und überlastet bisweilen das Netz. Nachts liefern die Solarmodule überhaupt keinen Strom Tageshöchstwert

77

78 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Freiwillige Selbstbeschränkung:

79 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Freiwillige Selbstbeschränkung: DC AC Solargenerator Umrichter Einspeisezähler DC AC DC AC

80 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Freiwillige Selbstbeschränkung: DC AC Solargenerator Umrichter Einspeisezähler DC AC DC AC

81 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Freiwillige Selbstbeschränkung: Solargenerator Umrichter Einspeisezähler DC AC

82 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Der Umrichter sollte möglichst klein sein, - Damit er billig ist - Damit die abzutransportierende elektrische Leistung möglichst klein ist.

83 Umrichterleistung (AC) = 1/3 Peak-Leistung (DC) Der Umrichter sollte möglichst klein sein, - Damit er billig ist - Damit die abzutransportierende elektrische Leistung möglichst klein ist. Kleiner als ca. 1/3 der Peak-Leistung darf die Umrichterleistung jedoch nicht sein, damit auch an einem sehr sonnigen Sommertag die gesamte Solarenergie der Tagesstunden innerhalb von 24 Stunden vollständig eingespeist werden kann. Wäre der Umrichter noch kleiner, würde er bei einer Folge schöner Sonnentage quasi überlaufen, d.h. nicht die gesamte Solarleistung mehr aufnehmen können.

84 Batterie aufladen Tageshöchstleistung (DC) Wir speichern die mittägliche Leistung und speisen sie am Abend und in der Nacht ein Direkt einspeisen speichern

85 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

86 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

87 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

88 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

89 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

90 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

91 Batterie aufladen Tageshöchstleistung (DC) Spitzenleistung des Umrichters (AC) Direkt einspeisen speichern

92 Batterie aufladen Direkt einspeisen Einspeisen

93 Einspeisung der gespeicherten Energie ins Stromnetz Direkt einspeisen Einspeisen speichern

94 Einspeisung der gespeicherten Energie ins Stromnetz Direkt einspeisen Einspeisen

95 Einspeisung der gespeicherten Energie ins Stromnetz Direkt einspeisen Einspeisen

96 Ende der Netzeinspeisung zum Schutz der Batterie vor Tiefentladung Direkt einspeisen Einspeisen

97 Ende der Netzeinspeisung zum Schutz der Batterie vor Tiefentladung Volkswirtschaftliche Vorteile: 1. Die mittägliche Solarspitze liefert einen Anteil zur Deckung der abendlichen Lastspitze Direkt einspeisen Einspeisen

98 Ende der Netzeinspeisung zum Schutz der Batterie vor Tiefentladung Volkswirtschaftliche Vorteile: 1.Die mittägliche Solarspitze liefert einen Anteil zur Deckung der abendlichen Lastspitze 2.Die Netze brauchen weniger Ausbau Direkt einspeisen Einspeisen

99 An Tagen mit sehr hoher Solareinspeisung reicht die gespeicherte Energie bis in die Morgenstunden Direkt einspeisen Einspeisen

100 An Tagen mit sehr hoher Solareinspeisung reicht die gespeicherte Energie bis in die Morgenstunden

101 Direkt einspeisen Einspeisen An Tagen mit sehr hoher Solareinspeisung reicht die gespeicherte Energie bis in die Morgenstunden

102 Speicher DC AC Solargenerator Umrichter Einspeisezähler Umrichterleistung = 1/3 Solargeneratorleistung

103 ca. 60 % des höchstmöglichen Solar- Tagesertrages Speicher DC AC Solargenerator Umrichter Speicherkapazität ausreichend für Einspeisezähler

104 Speicher DC AC Solargenerator Umrichter Einspeisezähler Bleibatterien oder andere wiederaufladbare Batterien mit gutem Wirkungsgrad ca.4 kWh Speicherkapazität pro 1kW p Solarleistung

105 Speicher DC AC Solargenerator Umrichter Einspeisezähler Bleibatterien oder andere wiederaufladbare Batterien mit gutem Wirkungsgrad ca.4 kWh Speicherkapazität pro 1kW p Solarleistung 4 große Autobatterien zum Preis von je 200

106 Speicher DC AC Solargenerator Umrichter Einspeisezähler Bleibatterien oder andere wiederaufladbare Batterien mit gutem Wirkungsgrad ca.4 kWh Speicherkapazität pro 1kW p Solarleistung Mehrkosten pro kW - derzeit noch ca. 1000 Außerdem: Wechsel des Batteriesatzes nach 10 Jahren.

107 Speicher DC AC Solargenerator mittags Umrichter Mittags Einspeisezähler

108 Speicher DC AC Solargenerator abends Umrichter Abends Einspeisezähler

109 Speicher DC AC Solargenerator nachts Umrichter Nachts Einspeisezähler

110 Speicher DC AC Solargenerator Umrichter Einspeisezähler indirekt direkt Je nach Verlauf des Jahres wird in manchen Jahren und Standorten der Solarstrom vermehrt auf dem direkten Weg oder aber auf dem indirekten Weg eingespeist.

111 Speicher DC AC Solargenerator Umrichter Einspeisezähler indirekt direkt Je nach Verlauf des Jahres wird in manchen Jahren und Standorten der Solarstrom vermehrt auf dem direkten Weg oder aber auf dem indirekten Weg eingespeist. Um dem Betreiber dennoch Investitionssicherheit für die Anschaffung des Speichers zu geben, wird bei der Auszahlung des Speicherbonus kein Unterschied zwischen direkter oder indirekter Einspeisung gemacht.

112 Speicher DC AC Solargenerator mittags nachts mittags Umrichter Verbraucher im Haushalt Zweirichtungs- zähler Haus- anschluss Jede angezeigte kWh erhält die Regelvergütung plus einem Speicherbonus von 19 ct/kWh Einspeisezähler

113 Speicher DC AC Solargenerator mittags nachts mittags Umrichter Verbraucher im Haushalt Zweirichtungs- zähler Haus- anschluss Jede angezeigte kWh erhält die Regelvergütung plus einem Speicherbonus von 19 ct/kWh Einspeisezähler Der Speicherbonus unterliegt einer jährlichen Degression von 5%

114 Speicher DC AC Solargenerator mittags nachts mittags Umrichter Verbraucher im Haushalt Zweirichtungs- zähler Haus- anschluss Automatische Trennung bei Stromausfall abends Einspeisezähler

115 Niedrig- preis Speicher DC AC Solargenerator Verbraucher im Haushalt Zweirichtungs- zähler Haus- anschluss Einspeisezähler mit zwei Zählrichtungen Bei Aufladen aus dem Netz läuft Zähler rückwärts Ausnutzen starker Strompreisunterschiede Bidirektionaler Umrichter

116 Hoch- preis Speicher DC AC Solargenerator Verbraucher im Haushalt Zweirichtungs- zähler Haus- anschluss Zähler läuft vorwärts. Gleicht Rückwärtslauf (fast) wieder aus Ausnutzen starker Strompreisunterschiede Einspeisezähler mit zwei Zählrichtungen Bidirektionaler Umrichter

117 Notwendige Änderungen (Diskussionsvorschlag) Muss noch ergänzt werden - AC-Spitzenleistung des Umrichters = 1/3 der DC-Peakleistung des Solargenerators - Netzanschlussberechnung nur für die (kleine) AC-Leistung des Umrichters - Vorrang für Solareinspeisung auch für gespeicherten Solarstrom - Zusätzliche Vergütung für den gesamten direkt und indirekt eingespeisten Solarstrom in Höhe von 19 cent/kWh Änderungsvorschläge für das EEG: § 9 (1) EEG: Netzbetreiber sind auf Verlangen der Einspeisewilligen verpflichtet, unverzüglich ihre Netze entspechend dem Stand der Technik zu optimieren, zu verstärken und auszubauen oder Stromspeicher zu integrieren, um die Abnahme, Übertragung und Verteilung des Stroms aus Erneuerbaren Energien oder Grubengas sicherzustellen. Ferner § 3 Nr. 7 EEG: "Netz" (ist) die Gesamtheit der miteinander verbundenen technischen Einrichtungen zur Abnahme, Übertragung, Verteilung und Speicherung von Elektrizität für die allgemeine Versorgung.

118 Ende des Vorschlags für eine vereinfachte Förderung dezentraler Speicher in Verbindung mit einer PV-Anlage Folgende weitere Vorschläge sind in Bearbeitung und werden später veröffentlicht: - Förderung dezentraler Speicher im Niederspannungsnetz ohne Verbindung zu einer PV-Anlage - Förderung von Speichern im Mittelspannungsnetz in der Nähe von Windparks - Förderung von dezentralen Langzeitspeichern im Nieder- und Mittelspannungsnetz

119 Um Leitungsausbau zu sparen, Stromspeicher in der Nähe der Solaranlagen z.B. im Keller

120 Wir setzen auf Unabhängigkeit von den Kohle- und Atomkonzernen. Elektrische Energie speichern und erzeugen wir selber aus Sonne, Wind und mit anderen Technologien der Erneuerbaren Energien Solaranlagen, Windanlagen, Kurzzeitspeicher, Langzeitspeicher

121 Wir setzen auf Unabhängigkeit von den Kohle- und Atomkonzernen. Elektrische Energie speichern und erzeugen wir selber aus Sonne, Wind und mit anderen Technologien der Erneuerbaren Energien Solaranlagen, Windanlagen, Kurzzeitspeicher, Langzeitspeicher Im Katastrophenfall: haben wir eine Selbstversorgungs- fähige Energie-Insel

122 Solaranlagen, Windanlagen, Kurzzeitspeicher, Langzeitspeicher Die bestehenden Übertragungsnetze wollen wir nicht abschaffen. Sie können auch zukünftig beim Ausgleich zwischen Überschuss- und Mangel- Gebieten genutzt werden. Aber wir brauchen keine neuen Fernübertragungsleitungen, denn wir setzen auf Windparks, Solaranlagen und Speicher in der Nähe der Verbraucher


Herunterladen ppt "Drei Handlungs-Schwerpunkte. Solaranlagen auf - 70 Prozent der Dachflächen - 70 Prozent der Fassadenflächen - 3 Prozent der Ackerflächen und Windanlagen."

Ähnliche Präsentationen


Google-Anzeigen